Abstract Algebra: Monoids, Groups, Rings

Abstract Algebra: Monoids, Groups, Rings

Notes on Abstract Algebra John Perry University of Southern Mississippi [email protected] http://www.math.usm.edu/perry/ Copyright 2009 John Perry www.math.usm.edu/perry/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States You are free: to Share—to copy, distribute and transmit the work • to Remix—to adapt the work Under• the following conditions: Attribution—You must attribute the work in the manner specified by the author or licen- • sor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial—You may not use this work for commercial purposes. • Share Alike—If you alter, transform, or build upon this work, you may distribute the • resulting work only under the same or similar license to this one. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copy- • right holder. Other Rights—In no way are any of the following rights affected by the license: • Your fair dealing or fair use rights; ◦ Apart from the remix rights granted under this license, the author’s moral rights; ◦ Rights other persons may have either in the work itself or in how the work is used, ◦ such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of • this work. The best way to do this is with a link to this web page: http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode i Table of Contents Reference sheet for notation ...........................................................v A few acknowledgements .............................................................vii Preface ..............................................................................viii Overview ..........................................................................viii Three interesting problems ............................................................1 Part . Monoids 1. From integers to monoids ...........................................................4 1. Some facts about the integers .........................................................5 2. Integers, monomials, and monoids ...................................................11 3. Direct Products and Isomorphism ....................................................15 Part I. Groups 2. Groups ............................................................................22 1. Groups ...........................................................................22 2. The symmetries of a triangle.........................................................29 3. Cyclic groups and order ............................................................36 4. Elliptic Curves ....................................................................43 3. Subgroups .........................................................................47 1. Subgroups.........................................................................47 2. Cosets ............................................................................51 3. Lagrange’s Theorem ................................................................56 4. Quotient Groups ..................................................................59 5. “Clockwork” groups................................................................64 6. “Solvable” groups ..................................................................67 4. Isomorphisms ......................................................................72 1. From functions to isomorphisms .....................................................72 2. Consequences of isomorphism .......................................................78 3. The Isomorphism Theorem ..........................................................83 4. Automorphisms and groups of automorphisms.........................................87 5. Groups of permutations............................................................92 1. Permutations......................................................................92 2. Groups of permutations ...........................................................101 3. Dihedral groups ..................................................................103 4. Cayley’s Theorem .................................................................108 5. Alternating groups ................................................................111 ii 6. The 15-puzzle ....................................................................116 6. Number theory ...................................................................119 1. GCD and the Euclidean Algorithm .................................................119 2. The Chinese Remainder Theorem ...................................................123 3. Multiplicative clockwork groups ....................................................130 4. Euler’s Theorem ..................................................................136 5. RSA Encryption ..................................................................140 Part II. Rings 7. Rings .............................................................................147 1. A structure for addition and multiplication ..........................................147 2. Integral Domains and Fields .......................................................150 3. Polynomial rings .................................................................155 4. Euclidean domains................................................................163 8. Ideals .............................................................................169 1. Ideals............................................................................169 2. Principal Ideals ...................................................................175 3. Prime and maximal ideals .........................................................178 4. Quotient Rings ...................................................................181 5. Finite Fields I ....................................................................186 6. Ring isomorphisms ...............................................................192 7. A generalized Chinese Remainder Theorem ..........................................197 8. Nullstellensatz....................................................................200 9. Rings and polynomial factorization................................................203 1. The link between factoring and ideals ...............................................203 2. Unique Factorization domains .....................................................206 3. Finite fields II ....................................................................209 4. Polynomial factorization in finite fields ..............................................214 5. Factoring integer polynomials ......................................................219 10. Gröbner bases ...................................................................224 1. Gaussian elimination ............................................................225 2. Monomial orderings .............................................................231 3. Matrix representations of monomial orderings ......................................238 4. The structure of a Gröbner basis ...................................................241 5. Buchberger’s algorithm ...........................................................251 6. Elementary applications ..........................................................259 11. Advanced methods of computing Gröbner bases ..................................264 1. The Gebauer-Möller algorithm ....................................................264 2. The F4 algorithm ................................................................273 iii 3. Signature-based algorithms to compute a Gröbner basis...............................278 Part III. Appendices Where can I go from here? ...........................................................287 Advanced group theory .............................................................287 Advanced ring theory ..............................................................287 Applications.......................................................................287 Hints to Exercises ...................................................................288 Hints to Chapter1 .................................................................288 Hints to Chapter2 .................................................................288 Hints to Chapter3 .................................................................290 Hints to Chapter4 .................................................................291 Hints to Chapter5 .................................................................291 Hints to Chapter6 .................................................................292 Hints to Chapter7 .................................................................293 Hints to Chapter8 .................................................................294 Hints to Chapter9 .................................................................295 Hints to Chapter 10 ................................................................295 Index................................................................................296 References...........................................................................300 iv Reference sheet for notation [r ] the element r + nZ of Zn g the group (or ideal) generated by g h i A3 the alternating group on three elements A/ G for G a group, A is a normal subgroup of G A/ R for R a ring, A is an ideal of R C the complex numbers a + b i : a, b C and i = p 1 [G,G] commutator subgroupf of a group

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    314 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us