Lecture 15 & 16 : Examples of Hilbert Spaces. Projection Theorem. Riesz

Lecture 15 & 16 : Examples of Hilbert Spaces. Projection Theorem. Riesz

Lecture 15 & 16 : Examples of Hilbert Spaces. Projection Theorem. Riesz Represen- tation Theorem. Adjoint Operators. Example 1. 1. The space Rn is a Hilbert space over R with the standard inner product defined by n n x, y := xkyk for x, y R . È Í œ kÿ=1 2. The space Cn is a Hilbert space over C with inner product defined by n n x, y := xkyk for x, y C . È Í œ kÿ=1 b 2 3. The space L2[a, b]= f :[a, b] K s.t f(t) dt < is a Hilbert space over K with inner I æ a | | ŒJ b s product defined by f,g := f(t)g(t) dt. È Í a s Œ 2 4. The space ¸2 = x =(x1,x2,...) s.t xj < is a Hilbert space with inner product defined I j=1 | | ŒJ by q Œ x, y := x y for x =(x ) ¸ ,y =(y ) ¸ . È Í k k k œ 2 k œ 2 kÿ=1 5. The space (¸p, ) with p =2is not an inner product space. ηÎp ” Proof. We will show that the norm does not satisfy the parallelogram equality. Take x =(1, 1, 0, 0, ) ¸ and y =(1, 1, 0, 0, ) ¸ .Then ··· œ p ≠ ··· œ p x = y =21/p, x + y = x y =2 Î Î Î Î Î Î Î ≠ Î So the parallelogram equality is not satisfied. 6. The space (C[a, b], ) is not an inner product space, hence not a Hilbert space. ηΌ t a Proof. Take f(t) = 1 and g(t)= ≠ .Wehave f = g = 1 and f + g =2, f g = 1. So b a Î Î Î Î Î Î Î ≠ Î the parallelogram equality is not satisfied.≠ Proposition 22. If in an inner product space, x x and y y then x ,y x, y . n æ n æ È n nÍæÈ Í Proof. We have x ,y x, y = x ,y x ,y + x ,y x, y = x ,y y + x x, y |È n nÍ≠È Í| |È n nÍ≠È n Í È n Í≠È Í| |È n n ≠ Í È n ≠ Í|Æ x ,y y + x x, y x y y + x x y Æ|È n n ≠ Í| |È n ≠ Í|ÆÎ nÎÎ n ≠ Î Î n ≠ ÎÎ Î Let n , we get æŒ 0 lim xn,yn x, y x 0+0 y =0. n Æ æŒ |È Í≠È Í|ÆÎ Î Î Î Hence, lim xn,yn x, y =0, lim xn,yn = x, y , which completes the proof. n n æŒ |È Í≠È Í| æŒÈ Í È Í 65 3.2 Orthogonal Projection Definition 1. Let A be a subset of an inner product space X.Theorthogonal complement of A is defined as A‹ := x X : x, a =0 for all a A . { œ È Í œ } Proposition 23. Let A be a subset of an inner product space X. Then A‹ is a closed linear subspace of X and A A 0 . fl ‹ µ{ } Proof. Exercise. Theorem 1. Let Y be a closed linear subspace of the real or complex Hilbert space X and x X be given. œ Then the following holds (i) There exists a unique y Y such that œ x y =min x z Î ≠ Î z Y Î ≠ Î œ (ii) The point y in part (i) is the unique vector in Y such that x y Y . ≠ œ ‹ The point y is called the orthogonal projection of x onto the subspace Y . Proof. (i) Existence. Denote d =inf x z . By the definition of the infimum, there exists a sequence z Y Î ≠ Î y Y such that x y d asœ n . We will prove that y is a Cauchy sequence. { n}µ Î ≠ nÎæ æŒ { n} Using parallelogram law, we have 2 2 1 2 2 yn ym +4 x (yn + ym) = 2( x yn + x ym ) for n, m 1. Î ≠ Î . ≠ 2 . Î ≠ Î Î ≠ Î Ø . 1 1 Since Y is a linear subspace of X and yn,ym Y ,wehave (yn +ym) Y . Therefore, x (yn + ym) œ 2 œ . ≠ 2 . Ø d. Hence . 2 . 2 2 2 1 2 2 2 yn ym = 2( x yn + x ym ) 4 x (yn + ym) 2( x yn + x ym ) 4d . Î ≠ Î Î ≠ Î Î ≠ Î ≠ . ≠ 2 . Æ Î ≠ Î Î ≠ Î ≠ . Let n, m ,wehave x yn d, x ym . d and . æŒ Î ≠ Îæ Î ≠ Îæ 2 2 2 0 lim yn ym 4d 4d =0. n,m Æ æŒ Î ≠ Î Æ ≠ Therefore, lim yn ym = 0 and yn is a Cauchy sequence. Since X is a Hilbert space, there exists n,m æŒ Î ≠ Î { } y X such that lim yn = y.Sinceyn Y and Y is closed, y Y . In conclusion, we have n œ æŒ œ œ x y =min x z . Î ≠ Î z Y Î ≠ Î œ Uniqueness. Suppose there is alsoy ˆ Y such that œ x yˆ =min x z . Î ≠ Î z Y Î ≠ Î œ 66 1 1 Applying the parallelogram law and using x (y +ˆy) d (since (y +ˆy) Y ), we have . ≠ 2 . Ø 2 œ . 1 . 2 . y yˆ 2 +4 x (y +ˆy) = 2( x y 2 + x yˆ 2)=4d2, Î ≠ Î . ≠ 2 . Î ≠ Î Î ≠ Î . 1 2 0 y yˆ 2 =4d2 4 x (y +ˆy) 0. ÆÎ ≠ Î ≠ . ≠ 2 . Æ . So y yˆ 2 =0,y=ˆy. Î ≠ Î . (ii). Orthogonality. Clearly, x y,0 = 0. Take z Y,z = 0. We will prove that x y, z = 0. By the È ≠ Í œ ” È ≠ Í construction of y in part (i), we have x y 2 x (y + ⁄z) 2 = x y 2 + ⁄ 2 z 2 ⁄ z,x y ⁄ x y, z , Î ≠ Î ÆÎ ≠ Î Î ≠ Î | | Î Î ≠ È ≠ Í≠ È ≠ Í 0 ⁄ 2 z 2 ⁄ x y, z ⁄ x y, z . Æ| | Î Î ≠ È ≠ Í≠ È ≠ Í x y, z Plugging ⁄ = È ≠ Í into the above inequality, we conclude z 2 Î Î x y, z 2 |È ≠ Í| 0, z 2 Æ Î Î which only happens when x y, z = 0. È ≠ Í Uniqueness. Assume there is also y Y such that x y Y .Theny y =(x y ) (x y) Y . ú œ ≠ ú œ ‹ ≠ ú ≠ ú ≠ ≠ œ ‹ On the other hand, y y Y since y, y Y .Soy y Y Y 0 . Therefore, y y = 0 and ≠ ú œ ú œ ≠ ú œ fl ‹ µ{ } ≠ ú y = yú. Note in part (i), we only need the condition that if y ,y Y then its average is also in Y . Therefore, n m œ we have a more general result for part (i). Theorem 2 (Hilbert’s Projection Theorem). Given a closed convex set Y in a Hilbert space X and x X. œ There exists a unique y Y such that œ x y =min x z . Î ≠ Î z Y Î ≠ Î œ Corollary 5 (Orthogonal Decomposition). Let Y be a closed linear subspace of the real or complex Hilbert space X. Then every vector x X can be uniquely represented as œ x = y + w, y Y, w Y ‹. œ œ The orthogonal decomposition is usually written as X = Y Y . ü ‹ Note: We can prove that X/Y =≥ Y ‹ (linear isomorphism). Definition 2 (Orthogonal Projection). Let Y be a closed linear subspace of the real or complex Hilbert space X.ThemapP : X X, P (x)=y, where x = y +w and (y, w) Y Y , is called the orthogonal Y æ Y œ ◊ ‹ projection in X onto Y . 67 3.3 Riesz Representation Theorem Lemma 7. Let (X, , ) be an inner product space. Then È Í 1. x, 0 = 0,x =0, x X È Í È Í ’ œ 2. If there are y ,y X such that x, y = x, y for all x X, then y = y . 1 2 œ È 1Í È 2Í œ 1 2 Proof. Exercise. Theorem 1 (Riesz Representation Theorem). Let X be a Hilbert space over K, where K = R or K = C. 1. For every y X, the functional f : X K, f(x)= x, y is an element in Xú and f = y . œ æ È Í Î Î Î Î 2. Conversely, for every f X , there exists a unique y X such that f(x)= x, y for every x X. œ ú œ È Í œ Moreover, f = y . Î Î Î Î Proof. (1). If y = 0, then the function f(x)= x, 0 = 0, for every x X, is an element in X and È Í œ ú f =0= y . Î Î Î Î If y = 0, we first verify that f(x)= x, y is linear. (prove this). ” È Í Using Cauchy-Schwarz inequality, we have f(x) = x, y x y . | | |È Í|ÆÎ ÎÎ Î So f is bounded and f y . Î ÎÆÎ Îf(x) f(y) On the other hand, f =sup| | | | = y . Therefore, f = y . Î Î x=0 x Ø y Î Î Î Î Î Î ” Î Î Î Î (2). Existence. Consider f X .Iff = 0, we can take y = 0 and f(x)= x, 0 for every x X. œ ú È Í œ Consider f X ,f = 0. œ ú ” Step 1: Prove that dim(X/ ker f) = 1. • Since f = 0, Imf = 0 . Moreover, since Imf is a subspace of K and dim K = 1, we have dim Imf ” ” { } K Æ 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    6 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us