JOANNA AALTO MANAGEMENT OF THE GROUNDWATER CONTAMINATED BY MILITARY EXPLOSIVES Master of Science thesis Examiner: University teacher Marja Palmroth Examiner and topic approved by the Faculty Council of the Faculty of Nat- ural Sciences on 7th September 2016 i ABSTRACT JOANNA AALTO : Management of the groundwater contaminated by military ex- plosives Tampere University of technology Master of Science Thesis, 80 pages, 13 Appendix pages October 2016 Master’s Degree Programme in Environmental and Energy Engineering Major: Water and Waste Management and Engineering Examiner: University Teacher FT Marja Palmroth Keywords: explosives, groundwater, remediation, water treatment Residual concentrations of the most commonly used explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) have been identified in soil and groundwater at military train- ing ranges in Finland. Military training areas are often located at groundwater areas clas- sified as important drinking water resources. The aim of this thesis is to examine degra- dation, migration, toxicity and environmental fate of TNT, RDX and HMX and to evalu- ate remediation and treatment methods for explosives contaminated groundwater. TNT, RDX and HMX are degraded by biological, chemical and abiotic processes. Disso- lution and adsorption are important in determination of migration but are largely site- specific characteristics. Despite of different properties, TNT, RDX and HMX are all found in groundwater. Possible treatment methods for groundwater are pump-and-treat, permeable reactive barriers and in situ chemical oxidation, but soil remediation has to be coupled with water treatment. The experimental part of this work contained two water treatment experiments and mon- itoring abiotic degradation of TNT and RDX. Efficiency of UV irradiation in degradation was tested with 407 J/m 2 and 550 J/m 2 UV doses. UV irradiation was chosen as it is used at some water work stations to ensure delivery of pathogen-free water. The aim was to evaluate feasibility of UV irradiation in degradation of explosives during standard water treatment practices. As a result, 29.6% of TNT and 36.9% of RDX was removed under 407 J/m 2 dose and 29.6% (TNT) and 46.7% (RDX) with 550 J/m 2. Hence, UV irradiation is not efficient enough for explosives degradation as sole method. Removal of explosives from TNT/RDX containing water by reverse osmosis (RO) was tested using Kärcher water purification system. The equipment can be used for production of drinking water at crisis management sites for military forces and civil population. As a result, TNT, RDX and intermediates present were removed below detection limit and safe drinking water can be produced by RO from explosives contaminated water. Due to quantity of reject water (60% of intake), method is not suitable for treatment at water works. Abiotic degradation was evaluated by monitoring removal of TNT and RDX from water exposed to natural light and in dark conditions. Under exposure to natural light, TNT and intermediates were removed within first week, while only 3.7% (7 d) and 33.3% (14 d) of TNT was degraded in dark. In contrast, only 16.0% and 28.6% of RDX was degraded during first and second week. RDX was not degraded under dark conditions. ii TIIVISTELMÄ JOANNA AALTO : Räjähdeainekontaminaation hallinta pohjavedessä Tampereen teknillinen yliopisto Diplomityö, 80 sivua, 13 liitesivua Lokakuu 2016 Ympäristö- ja energiatekniikan tutkinto-ohjelma Pääaine: Vesi- ja jätehuoltotekniikka Tarkastaja: Yliopisto-opettaja Marja Palmroth Avainsanat: räjähdeaineet, pohjavesi, kunnostus, veden puhdistus Yleisimpien räjähdeaineiden 2,4,6-trinitrotolueenin (TNT), perhydro-1,3,5-trinitro-1,3,5- triatsiinin (RDX) ja oktahydro-1,3,5,7-tetranitro-1,3,5,7-tetratsokiinin (HMX) jäännöspitoisuuksia on viime vuosien aikana todettu maaperästä ja pohjavedestä Puolustusvoimien harjoitusalueilla Suomessa. Alueet sijaitsevat usein tärkeiksi pohja- vesialueiksi luokitelluilla alueilla. Työn tavoitteena on selvittää TNT:n, RDX:n ja HMX:n hajoamista, toksisuutta ja kulkeutumista sekä arvioida kunnostus- ja puhdistus- menetelmien soveltuvuutta räjähdeaineita sisältävän pohjaveden kunnostuksessa. TNT, RDX ja HMX hajoavat biologisin, kemiallisin ja abioottisin mekanismein. Liukeneminen ja adsorptio ovat kulkeutumisen kannalta merkittävimmät prosessit, mutta ovat paikkakohtaisia. Huolimatta erilaisista ominaisuuksista sekä TNT, RDX että HMX voivat kulkeutua pohjaveteen. Mahdollisia pohjaveden kunnostusmenetelmiä ovat pump- and-treat, reaktiiviset seinämät ja kemiallinen kunnostus, mutta myös maaperä on kunnostettava pohjaveden kunnostuksen yhteydessä. Työn kokeelliseen osuuteen sisältyy kaksi vedenpuhdistuskoetta sekä TNT:n ja RDX:n hajoamisen seuranta. UV-säteilyn tehokkuutta räjähteiden hajotuksessa selvitetään 407 J/m 2 ja 550 J/m 2 säteilyannoksilla. Koska UV-käsittelyä käytetään joillakin vedenpuhdistamoilla varmistamaan taudinaiheuttajista vapaan veden tuottaminen, työssä selvitetään UV-säteilyn tehokkuutta räjähteiden hajotuksessa vedenkäsittelyprosessin aikana. Kokeessa 29,6% TNT:stä ja 36,9% RDX:stä hajosi 407 J/m 2 UV-annoksella ja 29,6% (TNT) ja 46,7% (RDX) UV-annoksella 550 J/m 2. Siten UV-säteilytys ei ole riittävä ainoana menetelmänä räjähdeaineiden hajotukseen. TNT:n ja RDX:n poistamista vedestä käänteisosmoosi –menetelmällä tutkittiin Kärcher vedenpuhdistuslaitteiston avulla. Laitteistoa voidaan käyttää kriisinhallintakohteissa turvaamaan Puolustusvoimien henkilöstön ja siviiliväestön puhtaan juomaveden saanti. Kokeessa TNT, RDX ja TNT:n hajoamistuotteet poistuivat vedestä alle toteamisrajan. Muodostuvan rejektiveden suuren määrän (60% otetusta vedestä) vuoksi menetelmä ei kuitenkaan ole soveltuva vedenottamoilla veden puhdistuksessa käytettäväksi. TNT:n ja RDX:n luonnollista hajoamista selvitettiin seuraamalla aineiden poistumista sekä luonnonvalossa että pimeässä säilytetyistä näytteistä. Luonnonvalolle alttiina säilytetyistä näytteitä TNT ja hajoamistuotteet hajosivat ensimmäisen viikon aikana kokonaan, kun pimeässä TNT:stä hajosi vain 3,7% ensimmäisen viikon ja 33,3% toisen viikon loppuun mennessä. Sen sijaan RDX:stä valossa hajosi 16,0% ensimmäisen viikon ja 28,6% toisen viikon aikana. RDX ei hajonnut pimeässä. iii PREFACE I would like to show my appreciation and present my gratitude to each and every person who has contributed to writing and finishing this work. This Master of Science thesis has been written at Environmental Management Department of Sito Oy in Tampere. The ex- periments included in this work have been conducted at Finnish Defence Forces Logistics School in Riihimäki Garrison with the equipment, materials and expertise provided by The Finnish Defence Forces and The Construction Establishment of Finnish Defence Ad- ministration. This Master of Science thesis has been done as part of The Finnish Defence Forces pro- ject to improve environmental protection of heavy weapons ranges. For the opportunity to make my thesis on such an interesting subject and supervision of this work, I would like to thank Tomi Pulkkinen and Jenni Haapaniemi from Sito and Kari Koponen from The Construction Establishment of Finnish Defence Administration. For supervision and guidance, I would also like thank Marja Palmroth from Tampere University of Technol- ogy. I am grateful for the chance I have had to learn and participate on working at Sito while writing my thesis. I would also like to thank Jenni, Tomi and all the colleagues at Sito for their guidance, support, fun company and pleasant working days. Special thanks to Kari Koponen for providing valuable guidance and background infor- mation, staff sergeant Eemeli Kärkäs for operating the equipment in the experiments and Timo Kröger, Teemu Pasanen and Tiina Vaittinen for their help with the experiments. Special thanks also for Maaperän tutkimus- ja kunnostusyhdistys ry, The Construction Establishment of Finnish Defence Administration and Sito Oy for supporting this work financially. Finally, I would like to thank my friends and family for their help and support while writing this thesis. Tampere, 21.9.2016 Joanna Aalto iv CONTENTS 1. INTRODUCTION .................................................................................................... 1 2. DEGRADATION OF EXPLOSIVES ...................................................................... 4 2.1 Chemical structure of the explosives and related compounds ....................... 4 2.2 Biological transformation and degradation .................................................... 5 2.2.1 TNT .................................................................................................. 5 2.2.2 RDX ................................................................................................. 8 2.2.3 HMX ................................................................................................ 9 2.3 Chemical and abiotic degradation .................................................................. 9 2.3.1 Hydrolysis ...................................................................................... 10 2.3.2 Photolysis ....................................................................................... 10 2.3.3 Reduction ....................................................................................... 11 2.3.4 Oxidation ........................................................................................ 12 3. CHEMICAL PROPERTIES, MIGRATION AND FATE OF EXPLOSIVES
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages101 Page
-
File Size-