Effects on support structure design due to wake-generated turbulence M.Sc. Thesis by Russell A. Guzmán Tejada 2014 Delft, The Netherlands. Effects on support structure design due to wake-generated turbulence by Russell A. Guzmán Tejada Ing. Mecatrónica por la UNAM, México. in partial fulfilment of the requirements for the degree of Master of Science in Sustainable Energy Technology at the Delft University of Technology, to be defended publicly on Tuesday October 24, 2014 at 9:30 AM. Supervisor: Dr. ir. M.B. Zaaijer, TU Delft Thesis committee: Prof. dr. G.J.W. van Bussel, TU Delft Dr. Eliz-Mari Lourens TU Delft This thesis is confidential and cannot be made public until October 23, 2014. An electronic version of this thesis is available at http://repository.tudelft.nl/. Abstract As the world demands cleaner, sustainable and economical energy sources, the wind energy academia and industry battles to increase performance and reduce costs. One of the promising fields of study is wind turbine wakes in wind farms. The position of the turbines within the layout affects the intensity of their wake effects, such as reduced wind speed or turbulence, therefore the choice of its position has an impact on wake losses and fatigue damage induced by wake-generated turbulence on the components. In this work, the possibility of wind turbine’s support structure cost reduction is explored by studying the effect on its design (and cost) caused by wake-generated turbulence. Furthermore, layout optimization considering wake losses and the wake-affected support structure cost was studied. To obtain insights about these effects, the turbulence intensity calculation and a simple support structure design were implemented into the wind farm design tool TeamPlay (by M. Zaaijer in the Wind Energy Research Group at TU Delft) and used to perform a series of case studies. The turbulence calculation was implemented following the IEC guidelines for any layout and wind direction distribution. The simple support structure design approach used in this work is based on two key aspects: (1) a base design obtained from Teamplay which does not account for fatigue and (2) the assumption of proportionality between fatigue equivalent load and turbulence. By using these tools, a location-specific support structure design within the wind farm was performed. Further, the weight and cost of the support structures was compared with the case in which all support structures have the same design obtained from the worst turbulence regime. It was found that wake-induced fatigue and its effect on the support structure design is not relevant for layout-spacing optimization because wake losses dominate the cost changes due to layout changes. Moreover, it was found that location-specific support structure design, according to their specific turbulence regime, would result in cost reductions that could account, as an upper limit, between 0.3 % and 0.7 % of the total capital costs in the studied cases. Finally, the cost reduction share of the total capital cost increases with increasing support structure size. i Acknowledgments First and foremost, I thank Mexico’s Science and Technology National Council (Consejo Nacional de Ciencia y Tecnología, CONACYT) for sponsoring my master’s studies and livelihood in The Netherlands. Without which, this endeavor may have not be possible. I appreciate the help and mentoring of Michiel Zaaijer as my supervisor throughout this thesis work. The thesis topic presented in this report came to be thanks to the help of Michiel; who formulated the topic based on my personal interests and his expertise. Thanks to my parents, Martín and Gaby, who have encourage and support my studies abroad. Finally, special thanks to my girlfriend Mariana for her loving support and patience throughout these challenging two years. October 10, 2014. Delft, The Netherlands. Russell A. Guzman Tejada ii Contents Abstract .................................................................................................................................................... i Acknowledgments ................................................................................................................................... ii 1. Introduction ..................................................................................................................................... 1 1.1. Energy sustainability and wind energy ..................................................................................... 1 1.2. Wind farms .............................................................................................................................. 1 1.3. Identification of the problem ................................................................................................... 3 1.4. Objective ................................................................................................................................. 3 1.5. Available resources .................................................................................................................. 4 1.6. Approach ................................................................................................................................. 4 1.7. Outline of the thesis ................................................................................................................. 5 2. Wind turbine wakes .......................................................................................................................... 6 2.1. Wake concepts ......................................................................................................................... 6 2.2. Formation and characteristics .................................................................................................. 7 2.3. Wake effects ............................................................................................................................ 9 3. Wake models selection ................................................................................................................... 12 3.1. Types and requirements ......................................................................................................... 12 3.2. Wind speed deficit models ......................................................................................................13 3.2.1. Overview .........................................................................................................................13 3.2.2. Single wake models ........................................................................................................13 3.3. Turbulence models ................................................................................................................ 14 3.3.1. Turbulence summation rule ........................................................................................... 14 3.3.2. Atmospheric turbulence ................................................................................................. 15 3.3.3. Wind turbine added turbulence ...................................................................................... 15 3.3.4. Turbulence profile shape ................................................................................................ 16 3.3.5. Increased ambient turbulence in wind farms .................................................................. 16 3.3.6. Test example .................................................................................................................. 17 3.3.7. Selection ........................................................................................................................ 18 4. Turbulence and Fatigue .................................................................................................................. 19 4.1. Basic fatigue concepts ........................................................................................................... 19 4.2. Turbulence generated fatigue loading in wind turbines .......................................................... 20 4.2.1. Literature relevant conclusions ...................................................................................... 20 4.2.2. The proportionality between equivalent load and turbulence ........................................ 20 iii 4.2.3. Contribution from wakes ............................................................................................... 24 4.2.4. Remarks ......................................................................................................................... 25 5. Qualitative support structure design .............................................................................................. 26 5.1. Support structure scope ......................................................................................................... 26 5.2. General overview of the design process ................................................................................. 27 5.3. Design drivers ........................................................................................................................ 27 5.4. Design approach for this work ................................................................................................ 27 5.5. Base design general dimensions ............................................................................................ 28 5.5.1. Tower............................................................................................................................. 28 5.5.2. Transition piece
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages66 Page
-
File Size-