Algorithms for Computer Algebra Algorithms for Computer Algebra

Algorithms for Computer Algebra Algorithms for Computer Algebra

Algorithms for Computer Algebra Algorithms for Computer Algebra K.O . Geddes University of Wa e loo S.R. Czapo La en ian Uni e i G. Labahn Uni e i of Wa e loo \/ Kl we Academi P bliP1he B o on/Do d e h /Lon don Distributors for North America: Kluwer Academic Publishers 101 Philip Drive Assinippi Park Norwell, Massachusetts 02061 USA Distributors for all other countries: Kluwer Academic Publishers Group Distribution Centre Post Office Box 322 3300 AH Dordrecht, THE NETHERLANDS Library of Congress Cataloging-in-PublicationData Geddes, K.O. (Keith O.), 1947- Algorithms for computer algebra / K.O. Geddes, S.R. Czapor, G. Labahn. p. cm. Includes bibliographical references and index. ISBN 0-7923-9259-0 (alk. paper) 1. Algebra--Data processing. 2. Algorithms. I. Czapor, S.R. (Stephen R.), 1957- . 11. Labahn, G. (George), 1951- 111. Title. QA155.7.E4G43 1992 512'.00285--dc20 92-25697 CIP Copyright O 1992 by Kluwer Academic Publishers All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, mechanical, photo-copying, recording, or otherwise, without the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip Drive, Assinippi Park, Norwell, Massachusetts 02061. Printed on acid-free paper. Printed in the United States of America Dedi a ion Fo hei ppo in n me o wa , hi boo i dedi a ed o Debbie, Kim, Ka h n, and Ki en Alexand a, Me le, Se ge, and Ma ga e La a, Cla dia, Jeff e , and Philip CONTENTS P efa e x Chap e 1 In od ion o Comp e Algeb a 1 .1 In od ion 1 1.2 S mboli e N me i Comp a ion 2 1 .3 A B ief Hi o i al S e h 4 1.4 An Example of a Comp e Algeb a S em : MAPLE 11 Exe i e 20 Chap e 2 Algeb a of Pol nomial , Ra ional F n ion , and Powe Se ie 2.1 In od ion 23 2.2 Ring and Field 23 2.3 Di i ibili and Fa o iza ion in In eg al Domain 26 2 .4 The E lidean Algo i hm 32 2 .5 Uni a ia e Pol nomial Domain 38 2.6 M l i a ia e Pol nomial Domain 46 2 .7 The P imi i e E lidean Algo i hm 52 2.8 Q o ien Field and Ra ional F n ion 60 2.9 Powe Seie and Ex ended Powe Seie 63 2.10 Rela ion hip among Domain 70 Exe i e 73 Chap e 3 No mal Fo m and Algeb ai Rep e en a ion 3.1 In od ion 79 3 .2 Le el of Ab a ion 79 3.3 No mal Fo m and Canoni al Fo m 80 3.4 No mal Fo m fo Pol nomial 84 3.5 No mal Fo m fo Ra ional F n ion and Powe Se ie 88 3.6 Da a S e fo M l ip e i ion In ege and Ra ional N mbe 93 3.7 Da a S e fo Pol nomial , Ra ional F n ion , and Powe Se ie 96 Exe i e 105 ia Algoi hm fo Comp e Algeb a Chap e 4 A i hme i of Pol nomial , Ra ional F n ion , and Powe Se ie 4.1 In od ion 11 i 4.2 Ba i A i hme i Algo i hm 112 4 .3 Fa A i hme i Algo i hm : Ka a ba' Algo i hm 118 4.4 Mod la Rep e en a ion 120 4 .5 The Fa Fo ie T an fo m 123 4.6 The In e e Fo ie T an fo m 128 4.7 Fa Pol nomial M l ipli a ion 132 4.8 Comp ing P imi i e N- h Roo of Uni 133 4.9 New on' I e a ion fo Powe Seie Di i ion 136 Exe i e 145 Chap e 5 Homomo phi m and Chine e Remainde Algo i hm 5.1 In od ion 151 5 .2 In e media e Exp e ion Swell : An Example 151 5.3 Ring Mo phi m 153 5.4 Cha a e iza ion of Mo phi m 160 5.5 Homomo phi Image 167 5.6 The In ege Chine e Remainde Algoi hm 174 5.7 The Pol nomial In e pola ion Algoi hm 183 5.8 F he Di ion of he Two Algoi hm 189 Exe i e 196 Chap e 6 New on' I e a ion and he Hen el Con ion 6.1 In od ion 205 6.2 P-adi and Ideal-adi Rep e en a ion 205 6.3 New on' I e a ion fo F( )=0 214 6.4 Hen el' Lemma 226 6.5 The Uni a ia e Hen el Lif ing Algoi hm 232 6 .6 Spe ial Te hniq e fo he Non-moni Ca e 240 6.7 The M l i a ia e Gene aliza ion of Hen el' Lemma 250 6.8 The M l i a ia e Hen el Lif ing Algo i hm 260 Exe i e 274 Chap e 7 Pol nomial GCD Comp a ion 7.1 In od ion 279 7.2 Pol nomial Remainde Seq en e 280 7 .3 The S l e e Ma ix and S b e l an 285 7.4 The Mod la GCD Algo i hm 300 7.5 The Spa e Mod la GCD Algo i hm 311 7.6 GCD' ing Hen el Lif ing : The EZ-GCD Algo i hm 314 7 .7 A He i i Pol nomial GCD Algo i hm 320 Exe i e 331 Con en ix Chap e 8 Pol nomial Fa o iza ion 8 .1 In od ion 337 8 .2 Sq a e-F ee Fa o iza ion 337 8 .3 Sq a e-F ee Fa o iza ion O e Fini e Field 343 8 .4 Be le amp' Fa o iza ion Algo i hm 347 8 .5 The Big P ime Be le amp Algo i hm 359 8 .6 Di in Deg ee Fa o iza ion 368 8 .7 Fa oing Pol nomial o e he Ra ional 374 8 .8 Fa oing Pol nomial o e Algeb ai N mbe Field 378 Exe i e 384 Chap e 9 Sol ing S em of Eq a ion 9 .1 In od ion 389 9 .2 Linea Eq a ion and Ga ian Elimina ion 390 9 .3 F a ion-F ee Ga ian Elimina ion 393 9 .4 Al ena i e Me hod fo Sol ing Linea Eq a ion 399 9 .5 Nonlinea Eq a ion and Re l an 405 Exe i e 422 Chap e 10 G obne Ba e fo Pol nomial Ideal 10.1 In od ion 429 10.2 Te m O de ing and Red ion 431 10 .3 G obne Ba e and B hbe ge ' Algo i hm 439 10 .4 Imp o ing B hbe ge ' Algo i hm 447 10 .5 Appli a ion of G obne Ba e 451 10 .6 Addi ional Appli a ion 462 Exe i e 466 Chap e 11 In eg a ion of Ra ional F n ion 11 .1 In od ion 473 11 .2 Ba i Con ep of Diffe en ial Algeb a 474 11 .3 Ra ional Pa of he In eg al : He mi e' Me hod 482 11 .4 Ra ional Pa of he In eg al : Ho owi z' Me hod 488 11 .5 Loga i hmi Pa of he In eg al 492 Exe i e 508 x Algo i hm fo Comp e Algeb a Chap e 12 The Ri h In eg a ion Algo i hm 12 .1 In od ion 511 12 .2 Elemen a F n ion 512 12 .3 Diffe en ia ion of Elemen a F n ion 519 12 .4 Lio ille' P in iple 523 12 .5 The Ri h Algo i hm fo T an enden al Elemen a F n ion 529 12 .6 The Ri h Algo i hm fo Loga i hmi Ex en ion 530 12 .7 The Ri h Algo i hm fo Exponen ial Ex en ion 547 12 .8 In eg a ion of Algeb ai F n ion 561 Exe i e 569 No a ion 575 Index 577 LIST OF ALGORITHMS 2.1 E lidean Algo i hm 34 2.2 Ex ended E lidean Algo i hm 36 2.3 P imi i e E lidean Algo i hm 57 4.1 M l ip e i ion In ege M l ipli a ion 113 4.2 Ka a ba' M l ipli a ion Algo i hm 119 4.3 Pol nomial T ial Di i ion Algo i hm 122 4 .4 Fa Fo ie T an fo m (FFT) 128 4 .5 Fa Fo ie Pol nomial M l ipli a ion 132 4.6 New on' Me hod fo Powe Seie In e ion 140 4.7 New on' Me hod fo Sol ing P( ) = 0 144 5.1 Ga ne ' Chine e Remainde Algo i hm 180 5.2 New on In e polaion Algo i hm 188 6.1 Uni a ia e Hen el Lif ing Algoi hm 233 6.2 M l i a ia e Pol nomial Diophan ine Eq a ion 268 6.3 Uni a ia e Pol nomial Diophan ine Eq a ion 270 6.4 M l i a ia e Hen el Lif ing Algoi hm 272 7.1 Mod la GCD Algo i hm 307 7 .2 M l i a ia e GCD Red ion Algo i hm 309 7 .3 The Ex ended Za enha GCD Algo i hm 316 7.4 GCD He i i Algo i hm 330 8 .1 Sq a e-F ee Fa o iza ion 340 8.2 Y n' Sq a e-F ee Fa o iza ion 342 8.3 Fini e Field Sq a e-F ee Fa o iza ion 345 8.4 Be le amp' Fa o ing Algoi hm 352 8.5 Fo m Q Ma ix 353 8.6 N ll Spa e Ba i Algo i hm 356 8 .7 Big P ime Be le amp Fa o ing Algoi hm 367 8 .8 Di in Deg ee Fa o iza ion (Pa ial) 371 8.9 Di in Deg ee Fa oiza ion (Spli ing) 373 8.10 Fa o iza ion o e Algeb ai N mbe Field 383 xii Algo i hm fo Comp e Algeb a 9 .1 F a ion-F ee Ga ian Elimina ion 398 9 .2 Nonlinea Elimina ion Algo i hm 417 9 .3 Sol ion of a Nonlinea S em of Eq a ion 421 10 .1 F ll Red ion Algo i hm 436 10 .2 B hbe ge ' Algoi hm fo G obne Ba e 446 10 .3 Con ion of a Red ed Ideal Ba i 448 10 .4 Imp o ed Con ion of Red ed G obne Ba i 450 10 .5 Sol ion of S em fo One Va iable 457 10 .6 Comple e Sol ion of S em 458 10 .7 Sol ion ing Lexi og aphi G obne Ba i 461 11 .1 He mi e' Me hod fo Ra ional F n ion 485 11 .2 Ho owi z' Red ion fo Ra ional F n ion 490 11 .3 Ro h ein/T age Me hod 499 11 .4 Laza d/Rioboo/T age Imp o emen 506 LIST OF FIGURES 1 .1 FORTRAN p og am in ol ing Cheb he pol nomial 3 1 .2 ALTRAN p og am in ol ing Cheb he pol nomial 3 1 .3 O p f om ALTRAN p og am in Fig e 1 .2 4 1.4 MAPLE e ion in ol ing Cheb he pol nomial 5 2.1 Rela ion hip among fo domain o e an in eg al domain 71 2.2 Rela ion hip among nine domain 71 3.1 Le el of ab a ion fo m l i a ia e pol nomial ep e en a ion 86 3.2 A lin ed li ep e en a ion 98 3.3 A d nami a a ep e en a ion 100 3 .4 A de ip o blo ep e en a ion 101 5.1 Homomo phi m diag am fo Chine e emainde and in e pola ion algo i hm 195 6.1 Homomo phi m diag am fo p-adi and ideal-adi New on' i e a ion 226 6.2 Homomo phi m diag am fo ni aia e and m l i aia e Hen el on ion ....251 LIST OF TABLES 1 .1 The fi fi e Cheb he pol nomial 2 2.1 Defini ion of algeb ai e 25 2.2 Addi ion and m l ipli a ion able fo Z5 25 2 .3 Hie a h of domain 31 PREFACE The field of computer algebra has gained widespread attention in recent years because of the increasing use of computer algebra systems in the scientific community.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    593 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us