Lecture 9 Analog and Digital I/Q Modulation

Lecture 9 Analog and Digital I/Q Modulation

Lecture 9 Analog and Digital I/Q Modulation Analog I/Q Modulation • Time Domain View •Polar View • Frequency Domain View Digital I/Q Modulation • Phase Shift Keying • Constellations 11/4/2006 Coherent Detection Transmitter Output 0 x(t) y(t) π 2cos(2 fot) Receiver Output Lowpass y(t) z(t) r(t) π 2cos(2 fot) • Requires receiver local oscillator to be accurately aligned in phase and frequency to carrier sine wave 11/4/2006 L Lecture 9 Fall 2006 2 Impact of Phase Misalignment in Receiver Local Oscillator Transmitter Output 0 x(t) y(t) π 2cos(2 fot) Receiver Output Output is zero Lowpass y(t) z(t) r(t) π 2sin(2 fot) • Worst case is when receiver LO and carrier frequency are phase shifted 90 degrees with respect to each other 11/4/2006 L Lecture 9 Fall 2006 3 Analog I/Q Modulation Baseband Input iti(t)(t) it (t) t cos 2 f tπ yt (t) 2cos(2( π 0 )f1t) π 2sin(2sin() 2π f0t f1t) qqt(t)(t) t qt (t) • Analog signals take on a continuous range of values (as viewed in the time domain) • I/Q signals are orthogonal and therefore can be transmitted simultaneously and fully recovered 11/4/2006 L Lecture 9 Fall 2006 4 Polar View of Analog I/Q Modulation it (t) = i(t)cos() 2π fot + 0° ii(t(t)t) it (t) qt (t) = q(t)cos() 2π fot + 90° = q(t)sin() 2π fot t cos 2π f tπ y (t) 2cos(2( 0 )f1t) t 2 2 π 2sin(2sin() 2π f0t f1t) yt (t) = i (t) + q (t) cos() 2π fot + θ(t) qq(tt(t)) −1 where θ(t) = tan q(t)/i(t) t qt (t) −180°<θ < 180° 11/4/2006 L Lecture 9 Fall 2006 5 Polar View of Analog I/Q Modulation (Con’t) • Polar View shows amplitude and phase of it(t), qt(t) and yt(t) combined signal for transmission at a given frequency f. • Magnitude of i(t) and q(t) vary with time, representing information in the analog domain. Q Q 2 2 y(t) i (t) + q (t) q(t) θ(t) i(t) I I q(t) i(t) y(t) θ(t) i2 (t)+ q2 (t) 11/4/2006 L Lecture 9 Fall 2006 6 Frequency Domain View of Analog I/Q Modulation 11 Transmitter Output f II(f)(f) -f 0 fo t o YIit(f)(f) 1 11 i(t)it(t) f f -f f π o 0 o 0 2cos2cos(2( 2π ff02tt)) y(t) QQ(f)t(f) π 2sin2sin(2() 2π ff02tt) 1 j YQqt(f)(f) qq(t)t(t) fo f f 0 j -fo 0 -j fo 1 f 0 -f-fo1 -j • Takes advantage of coherent receiver’s sensitivity to phase alignment with transmitter local oscillator – We have two orthogonal transmission channels (I and Q) available to us – Transmit two independent baseband signals (I and Q) with two sine waves in quadrature at transmitter 11/4/2006 L Lecture 9 Fall 2006 7 Analog I/Q Modulation-Transceiver Baseband Input Receiver Output Lowpass it(t) ir(t) t t 2cos( 2π f tπ) 2cos 2ππf t 2cos(20 f1t) 2cos(2( f01t)) 2sin(2πf t) 2sin(2πf t) 2sin() 2π f0t 1 2sin() 2π f1t 0 Lowpass qt(t) qr(t) t t • I/Q signals take on a continuous range of values (as viewed in the time domain) • Used for AM/FM radios, television (non-HDTV), and the first cell phones • Newer systems typically employ digital modulation instead 11/4/2006 L Lecture 9 Fall 2006 8 I/Q Transceiver Frequency Domain View 11 11 Transmitter Output Receiver Output f f I (f) -fo 0 fo -fo 0 fo I (f) t 11Yi(f) r 1 Lowpass 2 it(t) ir(t) f f -f f f π o 0 o 0 2cos2cos(2 2π ff2tt) y(t) y(t) 2cos(2πf t) 0 ( 0 ) 2cos( 2π 1f0t) Q (f) Q (f) t 2sin() 2ππf0t 2sin 2π f t r 2sin(2 f2t) 2sin(2()f10t) Lowpass 1 j Yq(f) 2 qt(t) qr(t) fo f f f 0 j -fo 0 j 0 -j fo ffo1 1 f f 0 -f 0 -f-f1 1 o -j -fo -j • Demodulate using two sine waves in quadrature at receiver – Must align receiver LO signals in frequency and phase to transmitter LO signals • Proper alignment allows I and Q signals to be recovered as shown 11/4/2006 L Lecture 9 Fall 2006 9 Impact of 90 Degree Phase Misalignment 11 j Transmitter Output f1 Receiver Output f f It(f) -fo 0 fo -f 0 I (f) 11Yi(f) 1 r 1 -j 2 it(t) ir(t) f f -f f f π o 0 o π 0 2cos(2 f2t) y(t) y(t) 2sin(2 f1t) 0 Qt(f) π π Qr(f) 2sin(2 f2t) -2cos(2 f1t) 1 j Yq(f) qt(t) qr(t) fo f f f 0 j -fo 0 0 -j f1 -fo fo -2 f f -f1 0 0 -j -1 -1 • I and Q channels are swapped at receiver if its LO signal is 90 degrees out of phase with transmitter – However, no information is lost! – Can use baseband signal processing to extract I/Q signals despite phase offset between transmitter and receiver 11/4/2006 L Lecture 9 Fall 2006 10 Digital I/Q Modulation Baseband Input +io ii(t(t)t) it (t) −i o t 2cos(2πf πt) yt (t) t 2cos(2o f1t) 2sin(2 πfπot)f t) +qo 1 qt((t)t) −qo qt (t) t t • I/Q signals take on discrete values at discrete time instants corresponding to digital data 11/4/2006 L Lecture 9 Fall 2006 11 Polar View of Digital I/Q Modulation Polar View shows amplitude and phase of it(t), qt(t) and yt(t) combined signal for transmission at a given frequency f. i(t) and q(t) have discrete values. In this case, binary values. ±io ±qo it (t) =±io cos( 2π fot) qt (t) =±qo sin() 2π fot it(t) qt(t) Q Q × +qo −io +io I × × I × −qo 2 2 yt (t) = io + qo cos( 2π fot + θ(t)) ±q where θ(t) = tan−1 o ±io 11/4/2006 L Lecture 9 Fall 2006 12 Polar View of Digital I/Q Modulation (cont’d) Q ii(t(t)t) it (t) t × × π yt (t) 2cos(22cos(2πfot)f1t) 2sin(2πf t) 2sin(2πfot)1 2 2 io + qo 4 QAM qt((t)t) 45° I Quadrature q (t) t Amplitude t Modulation Given io = qo = 1 × × yt (t) = 2 θ(t) can have 4 values 45°, 135°, − 45°, − 135° Transmission signal is sine wave at frequency f0 with information encoded in discrete values of amplitude and phase. 11/4/2006 L Lecture 9 Fall 2006 13 Digital Modulation: 16-QAM Baseband Input it(t) t π 2cos(2 f1t) π 2sin(2 f1t) qt(t) t • I/Q signals take on discrete values at discrete time instants corresponding to digital data • I/Q signals may be binary or multi-bit – Multi-bit shown above (4 levels each) 11/4/2006 L Lecture 9 Fall 2006 14 Constellation Diagram:16-QAM Q 00 01 11 10 00 Decision 01 Boundaries I 11 10 Decision Boundaries • We can view I/Q values at sample instants on a two-dimensional coordinate system • Decision boundaries mark up regions corresponding to different data values • Gray coding used to minimize number of bit errors that occur if wrong decisions made due to noise 11/4/2006 L Lecture 9 Fall 2006 15 Advantages of Digital Modulation • Allows information to be “packetized” – Can compress information in time and efficiently send as packets through network – In contrast, analog modulation requires “circuit-switched” connections that are continuously available • Inefficient use of radio channel if there is “dead time” in information flow • Allows error correction to be achieved – Less sensitivity to radio channel imperfections • Enables compression of information – More efficient use of channel • Supports a wide variety of information content – Voice, text and email messages, video can all be represented as digital bit streams 11/4/2006 L Lecture 9 Fall 2006 16.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us