LOGIC in COMPUTER SCIENCE by Benji MO Some People Are Always Critical of Vague Statements. I Tend Rather to Be Critical Precise

LOGIC in COMPUTER SCIENCE by Benji MO Some People Are Always Critical of Vague Statements. I Tend Rather to Be Critical Precise

LOGIC IN COMPUTER SCIENCE by Benji MO Some people are always critical of vague statements. I tend rather to be critical precise statements. They are the only ones which can correctly be labeled wrong. { Raymond Smullyan August 2020 Supervisor: Professor Hantao Zhang TABLE OF CONTENTS Page LIST OF FIGURES . viii CHAPTER 1 Introduction to Logic . 1 1.1 Logic is Everywhere . 2 1.1.1 Statement or Proposition . 3 1.1.2 A Brief History of Logic . 4 1.2 Logical Fallacies in Arguments . 5 1.2.1 Formal Fallacies . 6 1.2.2 Informal Fallacies . 7 1.3 A Brief Review of Mathematical Logic . 14 1.3.1 Set Theory . 14 1.3.2 Model Theory . 23 1.3.3 Proof Theory . 25 1.3.4 Computability Theory . 28 1.4 Exercise Problems . 32 2 Propositional Logic . 36 2.1 Syntax . 36 2.1.1 Logical Operators . 36 2.1.2 Formulas . 38 2.2 Semantics . 40 2.2.1 Interpretations . 40 2.2.2 Models, Satisfiability, and Validity . 43 2.2.3 Equivalence . 45 2.2.4 Entailment . 48 2.2.5 Theorem Proving and the SAT Problem . 51 2.3 Normal Forms . 52 2.3.1 Negation Normal Form (NNF) . 54 2.3.2 Conjunctive Normal Form (CNF) . 55 2.3.3 Disjunctive Normal Form (DNF) . 57 2.3.4 Full DNF and Full CNF from Truth Table . 59 2.3.5 Binary Decision Diagram (BDD) . 60 2.4 Optimization Problems . 65 2.4.1 Minimum Set of Operators . 65 iii 2.4.2 Logic Minimization . 68 2.4.3 Maximum Satisfiability . 76 2.5 Using Propositional Logic . 77 2.5.1 Bitwise Operators . 77 2.5.2 Specify Problems in Propositional Logic . 80 2.6 Exercises . 83 3 Proof Procedures for Propositional Logic . 91 3.1 Semantic Tableau . 94 3.1.1 Tableau: A Tree Structure for DNF . 94 3.1.2 α-Rules and β-Rules . 96 3.2 Deductive Systems . 99 3.2.1 Inference Rules and Proofs . 99 3.2.2 Hilbert Systems . 101 3.2.3 Natural Deduction . 103 3.2.4 Inference Graphs . 107 3.3 Resolution . 108 3.3.1 Resolution Rule . 109 3.3.2 Resolution Strategies . 111 3.3.3 Preserving Satisfiability . 114 3.3.4 Completeness of Resolution . 117 3.3.5 A Resolution-based Decision Procedure . 120 3.3.6 Clause Deletion Strategies . 121 3.4 Boolean Constraint Propagation (BCP) . 125 3.4.1 BCP: a Simplification Procedure . 125 3.4.2 BCP: a Decision Procedure for Horn Clauses . 127 3.4.3 Unit Resolution versus Input Resolution . 127 3.4.4 Head-Tail Literals for BCP . 130 3.5 Exercises . 134 4 Propositional Satisfiability . 138 4.1 The Davis-Putnam-Logemann-Loveland Procedure . 139 4.1.1 Recursive Version of DPLL . 139 4.1.2 All-SAT and Incremental SAT Solvers . 142 4.1.3 BCPw: Implementation of Watch Literals . 143 4.1.4 Iterative Implementation of DPLL . 146 4.1.5 Decisions and Decision Heuristics . 148 4.2 Conflict-Driven Clause Learning (CDCL) . 148 4.2.1 Generate Clause from Conflict . 149 4.2.2 DPLL with CDCL . 151 4.2.3 Unsatisfiable Cores . 153 4.2.4 Random Restart . 155 4.3 Use of SAT Solvers . 156 iv 4.3.1 Specify SAT Instances in DIMACS Format . 157 4.3.2 Sudoku Puzzle . 158 4.3.3 Latin Square Problems . 160 4.3.4 Graph Problems . 161 4.4 Local Search Methods . 163 4.4.1 Local Search Methods for SAT . 164 4.4.2 2SAT vesus Max-2SAT . 166 4.5 Maximum Satisfiability . 168 4.5.1 Weight Max-SAT and Hybrid Max-SAT . 168 4.5.2 The Branch-and-Bound Algorithm . 170 4.5.3 Simplification Rules and Lower Bound . 172 4.5.4 Use of Hybrid Max-SAT Solvers . 175 4.6 Exercise Problems . 179 5 First Order Logic . 181 5.1 Syntax of First Order Languages . 181 5.1.1 Terms and Formulas . 182 5.1.2 The Quantifiers . 186 5.1.3 Unsorted and Many-Sorted Logics . 188 5.2 Semantics . 190 5.2.1 Interpretation . 190 5.2.2 Models, Satisfiability, and Validity . 194 5.2.3 Entailment and Equivalence . 195 5.3 Proof Methods . 199 5.3.1 Semantic Tableau . 199 5.3.2 Natural Deduction . 202 5.4 Conjunctive Normal Form . 203 5.4.1 Prenex Normal Form and Negation Normal Form . 203 5.4.2 Skolemization . 205 5.4.3 Skolemizing Non-Prenex Formulas . 208 5.4.4 Clausal Form . 209 5.4.5 Herbrand Models for CNF . 211 5.5 Exercise Problems . 213 6 Unification and Resolution . 215 6.1 Unification . 215 6.1.1 Substitutions and Unifiers . 215 6.1.2 Combining Substitutions . 217 6.1.3 Rule-Based Unification . 217 6.1.4 Almost Linear Time Unification . 221 6.2 Resolution . 225 6.2.1 The Resolution and Factoring Rules . 225 6.2.2 A Refutationbal Proof Procedure . 228 v 6.3 Ordered Resolution . 230 6.3.1 Simplfication Orderings . 230 6.3.2 The Ordered Resolution Rule . 234 6.3.3 Completeness of Ordered Resolution . 234 6.4 Prover9 and Mace4 . 237 6.4.1 Input Formulas to Prover9 . 237 6.4.2 Inference Rules and Options . 243 6.4.3 Search Heuristics and Limits . 246 6.4.4 Term Ordering in Prover9 . 249 6.4.5 Mace4 . 250 6.4.6 Finite Model Finding by SAT Solvers . 253 6.5 Exercise Problems . 255 7 Equational Logic . 257 7.1 Equality of Terms . 257 7.1.1 Axioms of Equality . 258 7.1.2 Semantics of \=" . 259 7.1.3 Theory of Equations . 261 7.2 Rewrite Systems . 263 7.2.1 Rewrite Rules . 264 7.2.2 Termination of Rewrite Systems . 266 7.2.3 Confluence of Rewriting . 267 7.2.4 The Knuth-Bendix Completion Procedure . 268 7.3 Inductive Theorem Proving . 275 7.3.1 Inductive Theorems . 275 7.3.2 Structural Induction . 276 7.3.3 Induction on Two Variables . 278 7.3.4 Multi-Sort Algebraic Specifications . 280 7.4 Resolution with Equality . 282 7.4.1 Paramodulation . 282 7.4.2 Simplification Rules . 283 7.4.3 Prover9 . 286 7.5 Exercise Problems . 287 8 Prolog: Programming in Logic . 290 8.1 Prolog's Working Principle . 290 8.1.1 Horn Clauses in Prolog ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    144 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us