Telescopes and Optics

Telescopes and Optics

TelescopesandOptics SurveyofAstronomyA110 TelescopesandOptics • Goals – Howdotelescopeswork? – Howdoastronomersutilize telescopes? – Whydowemoveintospace? • PrincipalsofOptics – Refraction Figure6-1 • Lighttravelsslowerindensematerials. • c=3x108 ms-1 (vacuum) • c=2x108 ms-1 (glass) • Lightpassingfromonemediumtothe next(e.g.airtoglass)canchangethe directionofthelight. • Thisiscausedbythechangeinthe velocityoflight. TelescopesandOptics SurveyofAstronomyA110 • RefractionandLenses Figure6-2,6-4 – Refractionenablesalenstofocuslight • Lightincidentonlensisrefractedbyan angleα. • Lightleavingthelensisrefractedbyan angle-α. • Curvedlensescanfocusordisperselight. – Lenses • Convexlensesfocusparallelraysoflight toacommonfocalpoint. • Concavelensesdisperseparallelraysof light. • Focallength ofalensisthedistancefrom thelenstothepointwherethelightfroma parallelbeamisbroughttoafocus. • Focalplane istheplaneontowhichan extendedimagewillbebroughttoa commonfocus. – LightfromGalaxiesandStarsis Parallel. TelescopesandOptics SurveyofAstronomyA110 • RefractingTelescope – ASingleLens • Aswithacameraoryoureyeasinglelens willbringanimageintofocusatthefocal plane(filmoryourretina). • Toviewtheimage(notapictureofthe image)yourequireasecondlens(or projectontoascreen). – DoubleLensSystem Figure6-5 • Secondlensmagnifiestheimage. • Objectivelens:largerlens,largerfocal length,formstheimage. • Eyepiecelens:smallerlens,smallerfocal length,magnifiestheimage. angulardiameterthrougheyepiece Magnification= angulardiameterbyeye focallengthoftheobjectivelens = focallengthoftheeyepiecelens TelescopesandOptics SurveyofAstronomyA110 • RefractingTelescope – Magnificationandlightgathering • Mostimportantaspectofatelescopeisthe amountoflightitcancollect. Lightgatheringpower∝areaoflens ∝diameter 2 • Morelight:fainterobject(e.g.eye’spupil) • Limitonmagnificationistheatmosphere. – Example:RefractingTelescope • Objectivefocallength=120cm • Eyepiecefocallength=4cm 120cm Magnification= =30(30x) 4cm • Magnificationpoweriswrittenas30x • Ifaneyepieceof2cmfocallengthisused themagnificationis60x. • Shorterthefocallengthoftheeyepiece (orlongerthefocallengthoftheobjective lens)themoremagnification. TelescopesandOptics SurveyofAstronomyA110 • Aberrations – Chromaticaberration Figure6-7 • Therefractionoflightbyalensdepends onitswavelength. • Differentwavelengthsarebroughtto focusatdifferentfocalpoints. • Onlyonewavelengthwillbeinfocusanda coloredhalowillresult. • Combininglayersofglasscanresolvethis. – SphericalAberration Figure6-13 • Asphericalmirrordoesnotbringlightto acommonfocusatthesamepoint(a curvedfocalplane).Thisresultsinafuzzy image. • Parabolicmirrorssolvethisproblembut atthecostoffieldofview. • Ifthemirrordoesnothaveacommon focallengthatallpointsthelightisnot broughttofocusatacommonfocalplane (e.g.HubbleSpaceTelescope). TelescopesandOptics SurveyofAstronomyA110 • Refractingvs ReflectingTelescopes – Earlytelescopes(<1900s) • Refractingtelescopesusing2lenses(e.g. Galileo). • Largerthelensthefaintertheobjectswe canview. • Largelensesrequirelargefocallengths (shortfocallengthsarehardtomake). • Largedefectfreelensesarehardto manufacture- largestlensmade(Yerkes) is102cm(19.5mfocallength). • Lensarenotveryefficient. – NewerTelescopes(>1900s) • Usemirrorsinplaceoflenses. • Largestmirrorsare8minsize. • “Easy”toconstructshortfocallengths. • Mirrorsareveryefficient(99%). • Easytosupport. TelescopesandOptics SurveyofAstronomyA110 • ReflectingTelescopes Figures6-9,6-10 – ReflectingSurface • Lightincident toaflatreflectingsurface atanangleα totheperpendicularis reflected atanangleα. – AReflectingCurvedSurface • Aconcavereflectingsurfacewillbring lighttoacommonfocus. • Focallength ofamirroristhedistance fromthemirrortothepointwherethe lightfromaparallelbeamisbroughttoa focus. • Theobjectivemirroriscalledaprimary mirror. • Nochromaticaberration. • Lightisfocusedinfromofthemirror- needto“pickoff”theimage. • Pickoffmirroriscalledthesecondary. TelescopesandOptics SurveyofAstronomyA110 • TypesofReflectingTelescopes Figure6-11 – Newtonian • Beamispickedoffbya45o flatmirror. • Earliestreflectingtelescopedesign. – PrimeFocus • Detectorisplacedwithinthebarrelofthe telescope. • Limitsthenumberofreflections. – Cassegrain • Lightisreflectedbackdownbyaconcave secondarymirror. • Lightpassesthroughtheprimary. • Mostcommondesign- shorttube. – Coude • LightReflectsoffthesecondary. • Lightispickedoffbyatertiarymirror. andreflectedtothepivotpoint(Nasmyth) ofthetelescope. TelescopesandOptics SurveyofAstronomyA110 • ReflectingTelescope – ImageScale • Atelescope'sfocallengthdeterminesthe scaleofanimageformed. – Imagebrightness • Thetelescope'sf-valueorfocalratio(i.e., focallengthdividedbydiameter) determinesimagebrightness. – Obscurationduetosecondary • Secondarymirrorblockssomeofthelight fromreachingthemirror. • Secondarydoesnot blockpartofthe image(lightfromasourcecomesfromall angles). TelescopesandOptics SurveyofAstronomyA110 • Howwellcanwesee? – Imagequalityislimitedbythe atmosphere(e.g.twinklingstars) • Theatmosphereisturbulent. • Lightpassingthroughtheatmospheregets refractedandthepathsofphotonsarenot thesame. • Thesizeofapointsourceduetothe blurringoftheatmosphereiscalledthe seeingdisk(0.5- 1arcsec). – Telescopesizelimitsresolution • Howwellwecanseparatetwoclose sources(angularresolution)dependson telescopesize. λ θ =2.5x105 D θ :diffractionlimit(arcseconds) λ :wavelength(m) D :primarymirrordiameter(m) • Longerwavelength→ worseimages. • Biggertelescopes→ betterimages. TelescopesandOptics SurveyofAstronomyA110 – Example:(1mtelescopeat500nm) λ θ = 2.5x105 D 600x10-9 =2.5x105 1 = 0.15arcsec • Evenwitha1metertheatmospherelimits howwellwecanresolveobjects. 10mtelescope θ = 0.015arcsec – Adaptiveoptics • Wecancorrectfortheturbulenceby deformingtheprimary/secondary mirrors. • Equivalenttocorrectingthewavefront of thelight. TelescopesandOptics SurveyofAstronomyA110 • Detectors – Photographicplates • Usedforimagingfrom1900sto1980s. • Lowsensitivity(2%efficiency). • Non-linearreaction(exposureT intensity). • Widefield(5degrees). – ChargeCoupledDevices(CCDs) • Usedinimagingfrom1980s. • Highsensitivity(70-90%). • Linearrelationbetweenphotonsand signal. • Similartodigitalcameras(runat-90oC). • Largefields(1degreemosaics). TelescopesandOptics SurveyofAstronomyA110 • NewWavelengths – RadioTelescopes • Stars,galaxiesandgasemitatradio frequencies- synchrotronradiation. • Easiertobuild- surfaceoftelescopedoes notneedtobeasaccurate(1/10thofa wavelength). • Dishesmadeofwireandmetal. • Resolutionpoorer. λ 0.20 θ = 2.5x105 = 2.5x105 D 10 =1.4degrees • Useinterferometry toimproveresolution. • Resolutiondeterminedbythelargest distancebetweentelescopes(i.e.their separation). • Observethroughcloud,daytime,rain. TelescopesandOptics SurveyofAstronomyA110 – Space-basedObservatories Figure6-27 • Transparencyoftheatmosphereisnota problem(ultravioletandfar-infrared). • Atmosphericturbulenceisnotaproblem (diffractionlimitedimages). • Skybackgroundislower. • NASA’sGreatObservatoriesProgram HubbleSpaceTelescope(UV,optical,andIR)1990. GammaRayObservatory[Compton]1991. AdvancedX-RayAstronomicalFacility[Chandra]1999. SpaceInfraredTelescopeFacility[SIRTF]2003..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    14 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us