The Influence of Chromatin in DNA-RNA Hybrid Metabolism

The Influence of Chromatin in DNA-RNA Hybrid Metabolism

The influence of chromatin in DNA-RNA hybrid metabolism Juan Carlos Martínez Cañas Tesis doctoral Universidad de Sevilla 2020 2 3 4 INDEX Introduction............................................................................................................ 21 1. Sources of DNA damage. ............................................................................... 23 1.1. Replication as a source of genome instability. ........................................ 25 1.2. Transcription as a source of genome instability. ..................................... 29 1.3. Transcription-replication conflicts as a source of genome instability. ...... 31 2. R loops ........................................................................................................... 34 2.1. Factors involved in R loop formation. ...................................................... 36 2.2. The state of the RNA. .............................................................................. 37 2.3. The state of the DNA. .............................................................................. 37 2.4. R loops and genome instability. .............................................................. 39 2.5. Detection of R loops throughout the genome. ......................................... 42 3. Chromatin. ...................................................................................................... 44 3.1. Histone post-translational modifications. ................................................. 45 3.2. Chromatin remodelers. ............................................................................ 48 3.3. Chromatin and DSB repair. ..................................................................... 49 3.4. Chromatin and R loops. .......................................................................... 50 Objectives.............................................................................................................. 55 Results…………………………………………………………………………………….57 Chapter I-Cytosine deamination as a tool to determine DNA-RNA hybrid length, frequency and distribution. .................................................................................... 59 1. H3∆1-28, H3K9-23A and H4K31Q histone mutations that lead to DNA-RNA hybrids do not lead to genome instability unless AID is overexpressed. ............ 61 2. H3K9-23A mutation does not impair replication fork progression and suppresses the replication defects of hpr1∆. ..................................................... 64 3. R loop formation in histone mutants is not related to an altered pattern of nucleosome positioning. .................................................................................... 67 5 4. R loops are similar in size regardless of whether they induce genome instability or not. ................................................................................................. 70 5. Similar R loop length in several R loop-accumulating mutants. .................. 75 6. R loops are formed at a very low frequency. .............................................. 77 7. Bisulfite-qPCR as an alternative method to DRIP ....................................... 79 8. Exploring the use of AID* deaminase in vivo to detect and map R loops. .. 82 9. AID* overexpression induces mutations genome-wide preferentially in large genes and independently of their GC content and expression levels. ............... 86 Chapter II- Effect of the loss of chromatin remodelers and histone modifiers in DNA-RNA hybrid metabolism. ............................................................................... 93 1. Chromatin remodeling mutants do not enhance S9.6 signal. ..................... 95 2. Chromatin remodeling mutants do neither lead to genome instability nor to enhanced sensitivity to AID overexpression ...................................................... 96 3. Rtt109 loss leads to the accumulation of DNA-RNA hybrids. ................... 100 4. Effect of AID* overexpression in rtt109∆ mutant. ...................................... 104 5. Rtt109 prevents DNA-RNA hybrid accumulation through its catalytic activity. ……………………………………………………………………………………106 6. DNA-RNA hybrids accumulate in rtt109∆ cells in all cell cycle phases. .... 108 7. Histone H3 deposition during S phase is not decreased in rtt109∆ mutant ……………………………………………………………………………………109 8. DNA-RNA accumulation in rtt109∆ is independent of the H3K56 acetylation state. ................................................................................................................ 111 9. Mutation of H3K14 and H3K23 (Rtt109 targets) to alanine increases DNA- RNA hybrid accumulation. ............................................................................... 113 10. The genotoxic sensitivity of rtt109∆ mutant is not dependent on DNA-RNA hybrids. ............................................................................................................ 114 6 11. The Rad52 foci accumulation phenotype of rtt109∆ mutant is partially caused by DNA-RNA hybrids. .......................................................................... 115 12. H3K9A mutation is able to suppress the genetic instability of hpr1∆. .... 118 13. The SCR defect of rtt109∆ is not caused by DNA-RNA hybrid accumulation. ................................................................................................... 118 14. rtt109∆ leads to the spontaneous accumulation of DSBs that are not induced by the presence of DNA-RNA hybrids. ............................................... 126 15. Deletion of HPR1 gene in an rtt109∆ background leads to a synergistic effect on genotoxic sensitivity. ......................................................................... 127 Discussion……………………………………………………………………………….129 1. New insights from histone mutants leading to DNA-RNA hybrid accumulation without genetic instability. .................................................................................... 131 2. Setting up the bisulfite deamination assay in yeast reveals that DNA-RNA hybrid length is not a relevant factor for the generation of genetic instability. ..... 132 3. Detection and mapping DNA-RNA hybrids by newly developed S9.6- independent methodologies based on cytosine deamination in vitro and in vivo. 134 4. A model to explain the different phenotypes of R loop-accumulating histone and hpr1∆ mutants. ............................................................................................. 138 5. R loop or related phenotypes not detected in yeast chromatin remodeler mutants. .............................................................................................................. 140 6. A screening among histone modifiers identifies Rtt109 as a new factor leading to DNA-RNA hybrid accumulation. ...................................................................... 141 7. The lack of acetylation of H3K14 and H3K23 contribute to the DNA-RNA hybrid accumulation in rtt109∆. ........................................................................... 142 8. Defective SCR contributes to the DNA-RNA hybrid accumulation of rtt109∆. ………………………………………………………………………………………143 9. A model to explain the DNA-RNA hybrid accumulation of rtt109∆. .............. 146 Conclusions ......................................................................................................... 151 7 Materials and Methods…………………………………………………………………153 Yeast strains, plasmids, primers and antibodies. ............................................. 155 Media used in this study. ................................................................................. 164 Techniques ...................................................................................................... 164 Bacterial transformation. ....................................................................................................... 164 Yeast transformation and gene disruption. ............................................................................ 164 Drop assay. ............................................................................................................................. 164 Plasmid loss assay. ................................................................................................................. 165 Recombination assay. ............................................................................................................. 165 Loss of heterozygocity (LOH) at MAT locus. ........................................................................... 165 Cell viability assay. .................................................................................................................. 166 AID*-induced mutation assay. ................................................................................................ 166 Bioinformatic analyses of AID*-induced mutations. .............................................................. 166 Rad52 foci detection. .............................................................................................................. 167 Cell culture synchronization and FACS analysis. ..................................................................... 167 Protein extraction and western blot. ...................................................................................... 168 Chromosome spreads. ............................................................................................................ 169 CTAB DNA extraction. ............................................................................................................. 169 2D-gel

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    195 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us