Linear Algebra

Linear Algebra

Linear Algebra Jonny Evans May 18, 2021 Contents 1 Week 1, Session 1: Matrices and transformations 5 1.1 Matrices . .5 1.1.1 Vectors in the plane . .5 1.1.2 2-by-2 matrices . .6 1.1.3 Mnemonic . .7 1.2 Matrices: examples . .7 1.2.1 Vectors in the plane . .7 1.2.2 Example 1 . .8 1.2.3 Example 2 . .8 1.2.4 Useful lemma . .8 1.2.5 Example 3 . .9 1.2.6 Example 4 . .9 1.2.7 Example 5 . 10 1.2.8 Example 6 . 11 1.2.9 Outlook . 11 1.3 Bigger matrices . 11 1.3.1 Bigger matrices . 11 1.3.2 More examples . 13 2 Week 1, Session 2: Matrix algebra 15 2.1 Matrix multiplication, 1 . 15 2.1.1 Composing transformations . 15 2.1.2 Mnemonic . 15 2.2 Matrix multiplication, 2 . 16 2.2.1 Examples . 16 2.3 Matrix multiplication, 3 . 17 2.3.1 Multiplying bigger matrices . 17 2.4 Index notation . 18 2.4.1 Index notation . 18 2.4.2 Associativity of matrix multiplication . 19 2.5 Other operations . 19 2.5.1 Matrix addition . 19 2.5.2 Special case: vector addition . 20 2.5.3 Rescaling . 20 1 2.5.4 Matrix exponentiation . 20 3 Week 2, Session 1: Dot products and rotations 22 3.1 Dot product . 22 3.2 Transposition . 23 3.3 Orthogonal matrices . 24 3.4 Rotations . 26 3.4.1 Example 1 . 26 3.4.2 Example 2 . 26 3.4.3 Example 3 . 27 4 Week 2, Session 2: Simultaneous equations 29 4.1 Simultaneous equations and row operations . 29 4.1.1 Simultaneous equations . 29 4.1.2 Solving these equations . 29 4.1.3 Row operations . 30 4.2 Echelon form . 31 4.3 Reduced echelon form . 32 4.3.1 Definition . 32 4.3.2 Reason for the definition . 33 4.3.3 Another example . 33 4.3.4 Strategy . 34 4.4 Echelon examples . 34 4.4.1 Example 1 . 34 4.4.2 Example 2 . 35 4.4.3 Example 3 . 36 5 Week 3, Session 1: Geometry of simultaneous equations and inverses 37 5.1 Geometric viewpoint on simultaneous equations, 1 . 37 5.1.1 2 variables . 37 5.1.2 Lines in the plane . 38 5.2 Geometric viewpoint on simultaneous equations, 2 . 39 5.2.1 3 variables . 39 5.2.2 Higher dimensions . 40 5.3 Subspaces . 41 5.3.1 Linear subspaces . 41 5.3.2 Affine subspaces . 41 5.3.3 More properties . 42 5.4 Inverses . 42 5.4.1 When can you “divide” by a matrix? . 42 5.4.2 Bigger matrices . 43 5.5 Inverses: examples . 44 5.5.1 Method for finding the inverse . 44 5.5.2 Examples . 44 6 Week 3, Session 2: Inverses and determinants 46 6.1 Elementary matrices, 1 . 46 6.1.1 Elementary matrices of type I . 46 6.1.2 Elementary matrices of type II . 47 2 6.2 Elementary matrices, 2 . 47 6.3 Determinants . 48 6.3.1 Definition . 48 6.3.2 Signs . 49 6.3.3 Index notation . 50 6.3.4 Examples . 50 6.4 Properties of determinants . 51 6.4.1 Type I row operations . 52 6.4.2 Type III row operations . 53 6.4.3 Type II row operations . 53 6.5 Determinants: examples . 53 7 Week 4, Session 1: More about determinants 55 7.1 Further properties of determinants . 55 7.1.1 Proof of the invertibility criterion . 55 7.1.2 Proof of multiplicativity of the determinant . 55 7.2 Cofactor expansion . 56 7.2.1 Signs . 57 7.2.2 Examples . 57 7.3 Geometry of determinants, 1 . 59 7.3.1 2-by-2 determinants and area . 59 7.3.2 Proof of theorem . 60 7.4 Geometry of determinants, 2 . 61 7.4.1 Higher dimensions . 61 7.4.2 Tetrahedra/simplices . 61 7.4.3 Determinant as scale factor for volumes . 63 8 Week 4, Session 2: Eigenvectors and eigenvalues 64 8.1 Eigenvectors and eigenvalues . 64 8.1.1 Eigenvectors and eigenvalues . 64 8.1.2 The eigenvector equation . 64 8.2 Finding eigenvalues . 65 8.2.1 Characteristic polynomial . 65 8.2.2 Examples . 66 8.2.3 Proof of theorem . 66 8.3 Eigenexamples . 67 8.4 Eigenspaces . 69 9 Week 5, Session 1: Eigenapplications 71 9.1 Differential equations . 71 9.1.1 Sketch of the idea . 71 9.1.2 An example in detail . 72 9.2 Ellipses . 73 9.2.1 General equation of an ellipse . 74 9.2.2 Normal form for ellipses . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    91 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us