Open Problems

Open Problems

Open Problems In the list below we collect some open problems related to the topics treated in this book. (OP-1) Let G be an amenable periodic group which is not locally finite. Does there exist a finite set A and a cellular automaton τ : AG → AG which is surjective but not injective? (OP-2) Let G be a periodic group which is not locally finite and let A be an infinite set. Does there exist a bijective cellular automaton τ : AG → AG which is not invertible? (OP-3) Let G be a periodic group which is not locally finite and let V be an infinite-dimensional vector space over a field K. Does there exist a bijective linear cellular automaton τ : V G → V G which is not invertible? (OP-4) Is every Gromov-hyperbolic group residually finite (resp. residually amenable, resp. sofic, resp. surjunctive)? (OP-5) (Gottschalk’s conjecture) Is every group surjunctive? (OP-6) Let G be a periodic group which is not locally finite and let A be an infinite set. Does there exist a cellular automaton τ : AG → AG whose image τ(AG) is not closed in AG with respect to the prodiscrete topology? (OP-7) Let G be a periodic group which is not locally finite and let V be an infinite-dimensional vector space over a field K. Does there exist a linear cellular automaton τ : V G → V G whose image τ(V G)isnot closed in V G with respect to the prodiscrete topology? (OP-8) Let G and H be two quasi-isometric groups. Suppose that G is surjunctive. Is it true that H is surjunctive? (OP-9) Let G be a non-amenable group. Does there exist a finite set A and a cellular automaton τ : AG → AG which is pre-injective but not surjective? (OP-10) Does there exist a non-sofic group? (OP-11) Does there exist a surjunctive group which is non-sofic? T. Ceccherini-Silberstein, M. Coornaert, Cellular Automata and Groups, 417 Springer Monographs in Mathematics, DOI 10.1007/978-3-642-14034-1, © Springer-Verlag Berlin Heidelberg 2010 418 Open Problems (OP-12) Let G and H be two quasi-isometric groups. Suppose that G is sofic. Is it true that H is sofic? (OP-13) Let G be a non-amenable group and let K be a field. Does there exist a finite-dimensional K-vector space V and a linear cellular automaton τ : V G → V G which is pre-injective but not surjective? (OP-14) Let G be a non-amenable group and let K be a field. Does there exist a finite-dimensional K-vector space V and a linear cellular automaton τ : V G → V G which is surjective but not pre-injective? (OP-15) (Kaplanski’s stable finiteness conjecture) Is the group algebra K[G] stably finite for any group G and any field K? Equivalently, is every group L-surjunctive, that is, is it true that, for any group G,any field K, and any finite-dimensional K-vector space V , every injective linear cellular a automaton τ : V G → V G is surjective? (OP-16) (Kaplanski’s zero-divisors conjecture) Is it true that the group alge- bra K[G] has no zero-divisors for any torsion-free group G and any field K? Equivalently, is it true that, for any torsion-free group G and any field K, every non-identically-zero linear cellular automaton τ : KG → KG is pre-injective? (OP-17) Is every unique-product group orderable? Comments (OP-1) The answer to this question is affirmative if G is non-periodic, i.e., it contains an element of infinite order (see Exercise 3.23), or if G is non- amenable (Theorem 5.12.1). On the other hand, if G is a locally finite group and A is a finite set, then every surjective cellular automaton τ : AG → AG is injective (see Exercise 3.21). An example of an amenable periodic group which is not locally finite is provided by the Grigorchuck group described in Sect. 6.9. (OP-2) The answer is affirmative if G is not periodic (cf. [CeC11, Corol- lary 1.2]). On the other hand, if G is locally finite and A is an arbitrary set, then every bijective cellular automaton τ : AG → AG is invertible (cf. Exercise 3.20 or [CeC11, Proposition 4.1]). (OP-3) The answer is affirmative if G is not periodic (cf. [CeC11,The- orem 1.1]). On the other hand, if G is locally finite and V is an arbitrary vector space, then every bijective linear cellular automaton τ : V G → V G is invertible (cf. [CeC11, Proposition 4.1]). (OP-5) Every sofic group is surjunctive (cf. Theorem 7.8.1). (OP-6)WhenA is a finite set and G is an arbitrary group, it follows from Lemma 3.3.2 that the image of every cellular automaton τ : AG → AG is closed in AG.WhenA is an infinite set and G is a non-periodic group, it is shown in [CeC11, Corollary 1.4] that there exists a cellular automaton τ : AG → AG whose image is not closed in AG. On the other hand, when G Comments 419 is locally finite, then, for any set A, the image of every cellular automaton τ : AG → AG is closed in AG (cf. Exercise 3.22 or [CeC11, Proposition 4.1]). (OP-6)WhenV is a finite-dimensional vector space over a field K and G is an arbitrary group, it follows from Theorem 8.8.1 that the image of every linear cellular automaton τ : V G → V G is closed in V G.WhenV is an infinite-dimensional vector space and G is a non-periodic group, it is shown in [CeC11, Theorem 1.3] that there exists a linear cellular automaton τ : V G → V G whose image is not closed in V G. On the other hand, when G is locally finite, then, for any vector space V , the image of every linear cellular automaton τ : V G → V G is closed in V G (cf. [CeC11, Proposition 4.1]). (OP-9) The answer is affirmative if G contains a nonabelian free subgroup (cf. Proposition 5.11.1). (OP-13) The answer is affirmative if G contains a nonabelian free subgroup (cf. Corollary 8.10.2). (OP-14) The answer is affirmative if G contains a nonabelian free subgroup (cf. Corollary 8.11.2). (OP-15) See the discussion in the notes at the end of Chap. 8. (OP-16) See the discussion in the notes at the end of Chap. 8. References [Abe] Abels, H.: An example of a finitely presented solvable group. In: Homological Group Theory Proc. Sympos., Durham, 1977. London Math. Soc. Lecture Note Ser., vol. 36, pp. 205–211. Cambridge University Press, Cambridge (1979) [Ady] Adyan, S.I.: Random walks on free periodic groups. Math. USSR, Izv. 21, 425–434 (1983) [AlS] Allouche, J.-P., Shallit, J.: Automatic Sequences: Theory, Applications, Gen- eralizations. Cambridge University Press, Cambridge (2003) [Amo] Amoroso, S., Patt, Y.N.: Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures. J. Comput. Syst. Sci. 6, 448–464 (1972) [AOP] Ara, P., O’Meara, K.C., Perera, F.: Stable finiteness of group rings in arbitrary characteristic. Adv. Math. 170, 224–238 (2002) [Aus] Auslander, L.: On a problem of Philip Hall. Ann. Math. 86, 112–116 (1967) [BanMS] Bandini, S., Mauri, G., Serra, R.: Cellular automata: from a theoreticel paral- lel computational model to its application to complex systems. Parallel Com- put. 27(5), 539–553 (2001). Cellular Automata: From Modeling to Applications (Trieste, 1998) [Bar] Bartholdi, L.: Gardens of Eden and amenability on cellular automata. J. Eur. Math. Soc. 12, 241–248 (2010) [Bas] Bass, H.: The degree of polynomial growth of finitely generated nilpotent groups. Proc. Lond. Math. Soc. 25, 603–614 (1972) [Bau] Baumslag, G.: Automorphism groups of residually finite groups. J. Lond. Math. Soc. 38, 117–118 (1963) [BaS] Baumslag, G., Solitar, D.: Some two-generator one-relator non-Hopfian groups. Bull. Am. Math. Soc. 68, 199–201 (1962) [BDV] Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s Property (T ). New Mathe- matical Monographs, vol. 11. Cambridge University Press, Cambridge (2008) [Ber] Bergman, G.M.: Right orderable groups that are not locally indicable. Pac. J. Math. 147, 243–248 (1991) [BCG] Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathe- matical Plays, vol. 2, 2nd edn. AK Peters, Natick (2003) [BKM] Blanchard, F., K˚urka, P., Maass, A.: Topological and measure-theoretic prop- erties of one-dimensional cellular automata. Physica D 103(1–4), 86–99 (1997). Lattice Dynamics (Paris, 1995) [BoR] Botto Mura, R., Rhemtulla, A.: Orderable Groups. Lecture Notes in Pure and Applied Mathematics, vol. 27. Dekker, New York (1977) [Bou] Bourbaki, N.: Topologie G´en´erale, Chapitres 1 `a 4. Hermann, Paris (1971) T. Ceccherini-Silberstein, M. Coornaert, Cellular Automata and Groups, 421 Springer Monographs in Mathematics, DOI 10.1007/978-3-642-14034-1, © Springer-Verlag Berlin Heidelberg 2010 422 References [Bow] Bowen, L.: Measure conjugacy invariants for actions of countable sofic groups. J. Amer. Math. Soc. 23, 217–245 (2010) [BuM] Burger, M., Mozes, S.: Lattices in product of trees. Publ. Math. IHES´ 92, 151–194 (2000) [Bur] Burks, A.W.: von Neumann’s self-reproducing automata. In: Burks, A.W. (ed.) Essays on Cellular Automata, pp. 3–64. University of Illinois Press, Champaign (1971) [CFP] Cannon, J.W., Floyd, W.J., Parry, W.R.: Introductory notes on Richard Thompsons groups.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us