
NASA-TP- 1464 19790023693 NASA Technical Paper 1464 Applicationof SpaceTechnologyto CrustalDynamicsand EarthquakeResearch AUGUST 1979 .- -r--_ • j _ -t r-rs I_L[ '.LL_" -'f ':-_ .... ,t.... E:,T :..r,. L! [',R" ,c,:( ' _':" * Frontispiece: Absolute plate motlon with respect to a hot- spot frame of reference (Minster-Jordan Model AMI-2). Velocity vectors drawn along small circles about rotation poles; 1 cm/ year maps into 2 geocentric degrees at 90° distance from the pole. For example, total convergence on the west coast of South America is about 9 cm/year. From Minster and Jordan (1979). Tandem efficaci do manus scientiae (Horace, Epodes XVII). For sale by the Superintendent of Document% U.8. Government PrtntlnZ OmceoWashlqtoa, D.C. 2040_. NASA Technical Paper 1464 Application of Space Technology to CrustalDynamics and Earthquake Research r Geodynamics Program Office i Resource Observation Division { NASA Office of Space and Terrestrial Applications ; i Washington, D. C. _' i I i N/ A NationalAeronautics and Space Administration Scientific and Technical " Information Branch 1979 O TABLE OF CONTENTS SECTION i: OVERVIEW I.I Introduction 1 1.2 Earthquake Hazard Reduction Program 1 1.3 Global Geodynamics 2 1.4 NASA's Role: Application of Space Technology to Earth Dynamics 4 1.5 Why Space Technology is Needed 9 1.6 Use of Remote Sensing Data 12 1.7 Strategy for NASA's Program 13 1.8 Program Elements 15 1.9 Cost Estimates 17 i.i0 Inter-Agency and International Participation 18 SECTION 2: INTRODUCTION 2.1 Geodynamics 19 2.2 Earthquake Research 20 2.3 Origin of the NASA Program 21 SECTION 3: SCIENTIFIC BACKGROUND 3.1 Basic Principles 23 3.2 Global, Regional, and Local-Scale Phenomena 32 3.2.1 Global-Scale Phenomena 32 3.2.1.1 Interplate Motions 32 3.2.1.2 Polar Motion and Earth Rotation -- 33 3.2.1.3 Gravity and Convection Dynamics -- 34 iii ! 3.2.2 Regional-Scale Phenomena _ 35_ _. ; 3.2.2.1 Regional Deformation and Motion : Along Faults 35 3.2.2.2 Regional Geology _ 37 3.2.3 Local-Scale Phenomena 38 3.5 Earthquake Precursors 41 3.3.1 Geophysical Methods 41 3.3.1.1 Crustal Deformation 41 3.3.1.2 Seismic Velocities 46 3.3.1.3 Gas Concentration in Ground Water; Other Techniques 46 3.3.2 Statistical Methods 46 3.4 State-of-the-Art and Potential for Prediction 48 3.5 Conventional Seismological and Geodetic Techniques 50 3.5.1 Seismological Techniques 50 3.5.2 Geodetic Techniques 51 i SECTION 4: MEASUREMENTS AND MODELS 4.1 Overview 53 4.1.1 Introduction 53 4.1.2 Areas of Application 53 • 4.1.2.1 Earthquakes 56 4.1.2.2 Volcanic Eruptions 60 iv 4.2 Global Measurements and Models - Plate Tectonic Motions 61 4.2.1 Objectives 61 4.2,2 Space Geodesy Measurements 63 4.2.2.1 Accuracy Requirements 63 4.2.2.2 Strategy 64 _ 4.2.2.3 Plate Deformation Networks 65 North American Plate Deformation - 66 Pacific PlateDeformation 70 Australian Plate Deformation 70 Western Eurasian Plate Deformation 71 4.2.2.4 Interplate Networks 71 • • 4.212.5 Frequency of Measurements 74 4.2.2.6 Coordinate Systems 74 4.2.3 Supporting Measurements 75 4.2.3.1 Gravimetry 75 4.2.3.2 Local Geodetic Measurements 76 4.2.3.3 Seismic Measurements 76_ _ • o 4.2.3.4 Geological Studies 77 4.2.4 Modeling Program 77 4.2.4.1 Plate Motions 77 4.2.4.2 Gravity Field 78 4.2.4.3 Magnetic Field 79 4.2.4.4 Tidal Models 79 V 4.3 GlobalMeasurements and Models - Earth Rotation and Polar Motion 81 4.3.1 Objective 81 4.3.2 Space Geodetic Measurements 81 4.3.2.1 Accuracy Requirements 81 4.3.2.2 Strategy 82 4.3.2.3 Network 85 4.3.2.4 Frequency of Measurements 86 4.3.2.5 Coordinate System 86 4.3.3 Supporting Measurements 87 4.3.3.1 Gravimetric 87 4.3.3.2 Local Geodetic 87 4.3.4 Modeling Program 87 4.3.4.1 Chandler Wobble 87 4.3.4.2 Annual Motion 87 4.3.4.3 Precession and Nutation 88 4.3.4.4 Effects of Mass Shifts on Polar Motion a._ Rotation Rate 88 4.3.4.5 Interior £_:ucture 88 4.4 Regional Measurements and Models 89 4.4.1 Introduction 89 4.4.1.1 Accuracy Requirements 92 4.4.2 Strike-Slip Plate Boundaries 93 4.4.2.1 Objectives 93 4.4.2.2 North American Regional Deforma- tion 96 4.4.2.3 New Zealand Regional Deformation - 96 vi 4.4.3 Subduction Boundaries 98 4.4.3.1 Objectives 98 4.4.3.2 Alaska 99 4.4.3.3 South America 101 4.4.3.4 Sunda Arc to New Guinea 103 4.4.4 Mixed Areas 105 4.4.4.1 Caribbean Plate and Central America 105 4.4.4.2 Japan and the Northwest Pacific -- 109 4.4.5 Spreading Centers 110 4.4.5.1 Fiji Plateau 112 4.4.6 Other Regions 112 4.4.6.1 Middle East 112 4.4.6.2 Central and Eastern Asia 114 4.4.7 Gravity Measurements 114 4.5 Measurements and Models - Local Scale 116 4.5.1 Approach 116 Global Positioning System 116 Spaceborne Laser Ranging System 117 4.5.2 Aftershock Studies 117 4.5.3 Frequency of Measurements 118 4.5.4 In-Situ Data Collection 118 vii SECTION 5: REMOTE SENSING FOR EARTHQUAKE HAZARD ASSESSMENT/REDUCTION AND FOR RESEARCH IN GEODYNAMICS 5.1 Objectives 121 5.2 Remote Sensing of Earthquake Hazards 123 5.2.1 Fault Mapping 123 5.2.2 Mapping of Terrain Conditions 126 5.2.3 Tsunami Flooding 129 5.2.4 Flooding from Dam Failures 129 5.2.5 National Earthquake Risk Evaluation 129 5.3 Basic Research in Tectonics and Geodynamics 131 SECTION 6 : IMPLEMENTATION 6.0 Introduction 135 r - 6.1 Facilities Available 137 6.1.i Fixed VLBI 137 6.1.2 Fixed Lasers 137 6.i.3 Mobile VLBI 139 6.1.4 Mobile Lasers 139 6.2 NASA Geodynamics Plans 14i 6.2.1 Moblas 141 6.2.2 Validation and Intercomparison 141 6.2.3 Lageos Investigations 142 6.3 Crustal Dynamics Program Plan 143 6.3.1 Plate Motion Studies 143 6.3.2 Plate Deformation Studies 143 6.3.3 Regional Deformation Studies 143 viii ° 6.4 Analysis of Mobile Unit Site Coverage 15i 6.5 Requirements for Mobile Stations 153 6.5.1 VLBI Development 155 6.5.2 Laser Development 155, 6.6 _ Advanced Techniques and System Development 157 6.611 GPS Systems 157 _i. 6.6/2_ Shuttle Ranging Experiment 159 <_ 6.6_3 Mobile Ground Systems 160 6.6.4 Future Systems 160 6.7 _Data Management and Analysis 161 6.7.1 Data Acquisition 161 6.7.2 Data Processing 161 6.7.3 Data Analysis 162 6 7 4 Data Archives 162 6.8 Inter,Agency and International Participation 163 6.8.1 Federal Agency Participation 163 6.8.2 International Participation 169 6.9 [ Implementation Schedule 174 6.9.1 Implementation Schedule 174 6.10 Program Cost Estimate 179 6.10.1 Fixed VLBI and Laser Facilities 177 6.10.2 Mobile VLBI and Laser Facilities 177 6.10.3 Ground System Operations 178 6.10.4 Data Management and Analysis 178 6.10.5 Space Systems 178 6.10.6 Advanced Techniques and SystemDevelopment 179 ix APPENDICES A. Lunar Laser Ranging: History and Activities 181 A.I The Apollo Lunar Ranging Retroreflector Experiment 181 A.2 Accomplishments 182 A.3 Activities 183 B. Fixed VLBI Development 187 C. Technique Validation and Intercomparison Experiments 191 D. Abbreviations 193 REFERENCES 197 INDEX OF PEOPLE 213 INDEX OF PLACES 223 INDEX OF THINGS 237 x LIST OF FIGURES SECTION 3: SCIENTIFIC BACKGROUND 3.1-1. Relative motion for normal, reverse, and strike-slip faulting 24 3.1-2a. Global earthquake epicenters, 1961-1967 26 3.1-3b. Global tectonic features 27 3.1-3. Elastic rebound theory of earthquake occurrence 28 3.2-1. Predicted motion at tectonic plate boundaries - 31 3.2-2. VLBI measurements, Pasadena to Goldstone 36 3.3-1. Anomalous crustal uplift preceding the 1964 Niigata (Japan) Earthquake 40 3.3-2. Tilt near Hollister, California 42_ _i 3.3-3. Premonitory seismic velocity changes near Garm 43__i 3.3-4. Time interval for seismic velocity precursors as a function of earthquake magnitude 44 3.3-5. Premonitory electrical resistivity changes in the USSR 45 SECTION 4: MEASUREMENTS AND MODELS 4.1-1. Coseismic vertical deformation in Alaska following the 1964 earthquake 54 4.1-2. Uplift following the 1964 Alaska earthquake --- 55 4.1-3. Gravity changes near Tangshan, China, in 1976 - 58 4.2-1. Standard deviation of velocity determination as a function of time 62 4.2-2 North American plate deformation: proposed arrangement of stations 67 4.2-3. Pacific plate deformation: proposed arrangement of stations 69 xi 4.2-4. Australian plate deformation: proposed arrangement of stations 72 4.2-5. Network of VLBI and laser stations for global study of platemotion 73 4.3-1. Planned National Geodetic Survey network for monitoring polar motion (Polaris) 83 4.3-2. Laser polar motion subnetwork 84 4.4-1. North American regional strain network 94 4.4-2. Tectonics and bathymetry near New Zealand 95 4.4-3.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages292 Page
-
File Size-