The Josephson Volt

The Josephson Volt

.VQV].QJQC .V1` %:J %ICVH `1H:C :JR:`R `1:JQV].QJ :IG`1R$VJ10V`1 7 V = n (h/2e) ν Sidney Shapiro University of Rochester 1970s ν = 9.3 GHz STANDARD ELECTROCHEMICAL CELL V = 1.018 volt Barry Taylor Bill Parker University of Pennsylvania ca. 1968 John Clarke Cambridge University ca. 1967 − ΔV/V < 1x10 8 Tom Finnegan Arnold Denenstein University of Pennsylvania Group International Conference on Precision Measurement and Fundamental Constants NBS, Gaithersburg August 1970 Bill Parker Barry Taylor Don Langenberg First-Generation Josephson Standards B. W. Petley, in Quantum Metrology and Fundamental Physical Constants (Plenum, 1983) p. 293. Pb-Pb Junction Ic = 700 μA ν ≅ 9 GHz n ≅ 250 10-mV Standard 2 Pb-Pb junctions NBS, Gaithersburg ca. 1972 Bruce Field 10-mV Josephson Standard NBS, Gaithersburg 1972 Brian Josephson 1973 Nobel Laureate Aloke Jain Shen Tsai Joe Sauvageau Jim Lukens Lukens Group Stony Brook University ca. 1983 − ΔV/V < 2x10 16 − ΔV/V < 3x10 19 V =100 mV Don Sullivan Mogens Levinsen NBS, Boulder University of Copenhagen 1985 ca. 1977 ν = 11.88 GHz Ic = 170 μA A/cm μ 1 $V:RR&CCQ7%JH 1QJ V] VIGV` CURRENT CURRENT VOLTAGE 50 μV/cm ________ MICROWAVE – BIASED JUNCTION DRIVEN DAMPED PENDULUM Nb-Pb Junction A/cm μ Ic = 98 μA 20 ν = 20.35 GHz (ω = 1.4) July, 1979 CURRENT CURRENT VOLTAGE 200 μV/cm (1H.:`R):% < %`$VJ +1VIV7V` +5Q%CRV` -:`H. PTB/NBS 1-Volt Array 1984 1,474 Pb-alloy junctions 10x30 mm chip ν = 90 GHz 1-volt Array 1,484 Nb-Pb Junctions 6x13 mm chip NBS, Boulder January 1985 Clark Hamilton NBS, Boulder ca. 1982 ν= 72 GHz − ΔV/V < 2x10 17 Shin Kosaka Jurgen Niemeyer Akira Shoji PTB/ETL Collaboration Dick Harris Frances Lloyd Jim Beall Clark Hamilton Dick Kautz NIST, Boulder May 1989 14,184 Nb-Pb Junctions ν= 87 GHz January 1988 10-volt Array 14,184 Nb-Pb junctions 10x20 mm chip NBS, Boulder January 1988 10-volt Array 20,208 Nb-AlO-Nb Junctions NIST, Boulder, 1992 10x20 mm chip SECOND-GENERATION JOSEPHSON STANDARDS &00(13-&$$1&4(-+3+1$&4-&(-+ &-1+4+&31+&$&+5&(5$&1(&1(3 -4 10 -5 Weston Cells 10 -6 10 -7 10 -8 Single Junction JVS 10 -9 10 Array JVS -10 10 1930 1950 1970 1990 Year THIRD-GENERATION JOSEPHSON STANDARD Programmable Array 511 externally shunted SIS JJs 75 GHz :GCV0`Q$`:II:GCV5 :JR:`R7 VI^ _ [ H.1] [ 5 +GR0R&%R+G =%JH 1QJ [ 4=<R`10V Charlie Burroughs 1 cm [ 3J `1J1H:CC7 :GCV0QC :$V V] [ 0`Q$`:II:GCV``QIU8 QR8 [ jV C1J$ 1IV [ %CC7:% QI: VR [ =1$.JQ1V1II%J1 7:CCQ1R1`VH HQJJVH 1QJ Hirotaki Yamamori David Olaya Franz Mueller Paul Dresselhaus Sam Benz PTB/NIST Collaboration Boulder, Colorado, 2008 69,632 Nb-NbSi-Nb Junctions Programmable 10-V Array 300,000 Nb-NbSi-Nb JJs 12x17 mm chip NIST, Boulder 2011 FOURTH-GENERATION JOSEPHSON STANDARD QV].QJ&`G1 `:`7:0V`Q`I7J .V1<V` • V: %`V – %:J %IRG:VRH:CH%C:GCV :H0QC :$V Q%`HV – :GCV:H0QC :$V – 0`Q$`:II:GCV:`G1 `:`71:0V`Q`I – QIG1JVRH5:H:JR:`G1 `:`71:0VR`Q`I `%JH 1QJ1J:1J$CV :JR:`R • &]]C1H: 1QJ • -V `QCQ$7 :JR:`R – &51J `1J1H :JR:`R – 0`Q$`:II:GCV.:`IQJ1HQ%`HV » ]VH `%I:J:C71 :IVJ< 0V``VH %:J 1<: 1QJ5VIQJ `: 1QJ VI1HQJR%H Q`QRV4VJV`: Q`1% ]% • 1JV:0V7J .V1 – 8 @=< QJV – 55G1 HQRVCVJ$ . – 4=<1JV54=<HCQH@ • VI1HQJR%H Q`HQRV $VJV`: Q` – R RH =:`IQJ1HR1 Q` 1QJ QV].QJ%JH 1QJ&``:71% ]% • :HRHQ%]CVR:``:71JV`1V – 5=%JH 1QJ – I`I 0QC :$V – R RH =:`IQJ1HR1 Q` 1QJ 51$1 1<V` +QJRC1JV:`1 1V Perfect quantization produces intrinsically accurate waveforms Proposed new SI units (2010) The 7 base units SECOND MOLE KILOGRAM CANDELA KELVIN METER AMPERE derive from 7 defined fundamental constants * = Cs hyperfine splitting NA = Avogadro constant h = Planck constant Kcd = Candela constant k = Boltzmann constant c = speed of light e = elementary charge Q.JQJ+Q1V.V`IQIV `7 11 .:%:J 1<VRQC :$V +Q1VQ%`HV • :CH%C:GCV]V%RQRJQ1V1:0V`Q`I VT2 ()=Δ 4 kTRf • &GQC% V VI]V`: %`VH:C1G`: 1QJ R V(T) T Sense amp amp R' R" V A/D Q QVNS Calibrate A/D 4 K Correlator Output -V:%`VRQC <I:JJHQJ :J Q`8 ^ _6RL)11CCHQJ `1G% V Q15&&:JR3`VRV`1J1 1QJ8 Electronic Kilogram Josephson volt and quantum Hall resistance yield electrical power. PE = V²/R Gravitational force and velocity yield mechanical power. PM = mg/ The Watt balance yields mass. m= V²/Rg/ NIST Watt Balance.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    61 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us