Some Relations Between Generalized Fibonacci and Catalan Numbers

Some Relations Between Generalized Fibonacci and Catalan Numbers

Sitzungsber. Abt. II (2002) 211: 143–154 Some Relations Between Generalized Fibonacci and Catalan Numbers By Johann Cigler (Vorgelegt in der Sitzung der math.-nat. Klasse am 10. Oktober 2002 durch das w. M. Johann Cigler) Abstract In a recent paper Aleksandar Cvetkovicc, Predrag Rajkovic and Milosˇ Ivkovic proved that for the Catalan numbers Cn the Hankel determinants of the sequence Cn þ Cnþ1 are Fibonacci numbers. Their proof depends on special properties of the cor- responding orthogonal polynomials. In this paper we give a generalization of their result by other methods in order to give more insight into the situation. Mathematics Subject Classifications: 05A10, 05A19, 05A30, 11Bxx, 15A15. Key words: Catalan number, Fibonacci number, Hankel determinant, q-analogue, lattice path, LU-factorization. 1. A Survey of Known Results P À Á nÀ1 nÀ1Àk The classical Fibonacci polynomials Fnðx; sÞ¼ k¼0 k nÀ1À2k k  x Às Áare intimately related to the Catalan numbers 1 2n Cn ¼ nþ1 n : The Fibonacci polynomials Fnðx; 1Þ, n > 0, are a basis of the vector space of polynomials. If we define the linear 2nþ1 functional L by LðFnþ1Þ¼n;0 then we get Lðx Þ¼0and 2n n Lðx Þ¼ðÀ1Þ Cn. We will now sketch how this fact can be generalized. 144 J. Cigler 1 Given any sequence t ¼ðtðnÞÞn¼0 of positive real numbers we define the t-Fibonacci polynomials (cf. [5]) by Fnðx; tÞ¼xFnÀ1ðx; tÞþtðn À 3ÞFnÀ2ðx; tÞð1:1Þ with initial conditions F0ðx; tÞ¼0, F1ðx; tÞ¼1. If s is a real or complex number and tðnÞ¼s for all n 2 N this reduces to the classical Fibonacci polynomials Fnðx; sÞ introduced above. The first terms are 2 3 F2ðx; tÞ¼x; F3ðx; tÞ¼x þ tð0Þ; F4ðx; tÞ¼x þ xtð0Þþxtð1Þ; ... We state for later purposes the recurrences for the subsequences with even or odd indices. 2 F2nðx; tÞ¼ðx þ tð2n À 4Þþtð2n À 3ÞÞF2nÀ2ðx; tÞ À tð2n À 4Þtð2n À 3ÞF2nÀ4ðx; tÞð1:2Þ and 2 F2nþ1ðx; tÞ¼ðx þ tð2n À 3Þþtð2n À 2ÞÞF2nÀ1ðx; tÞ À tð2n À 3Þtð2n À 4ÞF2nÀ3ðx; tÞ: ð1:3Þ The polynomials Fnðx; tÞ, n > 0, are a basis of the vector space P of all polynomials in x. We can therefore define a linear functional L on P by LðFnÞ¼n;1: ð1:4Þ ^ Fnðx;tÞ Let Fnðx; tÞ¼tð0Þtð1ÞtðnÀ2Þ : Then we have xF^n ¼ tðn À 1ÞF^nþ1 À F^nÀ1: nþk d 2 e n Define now the numbers an;k ¼ðÀ1Þ Lðx F^kþ1Þ, where dxe de- notes the least integer greater than or equal to x. They satisfy a0;k ¼ 0;k an;k ¼ anÀ1;kÀ1 þ tðkÞanÀ1;kþ1 ð1:5Þ where, an;k ¼ 0ifk < 0. They have an obvious combinatorial interpretation. Consider all nonnegative lattice paths in R2 which start in ð0; 0Þ with upward steps ð1; 1Þ und downward steps ð1; À1Þ. We associate to each upward step ending on the height k the weight 1 and to each downward step ending on the height k the weight tðkÞ. The weight of the path is the product of the weights of all steps of the path. Then an;k is the weight of all nonnegative lattice paths from ð0; 0Þ to ðn; kÞ. Some Relations Between Generalized Fibonacci and Catalan Numbers 145 It is clear that a2nþ1;0 ¼ 0. If we set a2n;0 ¼ CnðtÞ, then CnðtÞ, which we call a t-CatalanÀ numberÁ (cf. [4]), is an analogue of the 1 2n Catalan number Cn ¼ nþ1 n , because it is well known that the number of such paths equals Cn. It is easy to give a recurrence for these t-Catalan numbers. To this end decompose each lattice path from ð0; 0Þ to ð2n; 0Þ into the first path which returns to the x-axis and the rest path. The first path goes from ð0; 0Þ to ð2k þ 2; 0Þ,0 k n À 1, and consists of a rising segment followed by a path from ð0; 0Þ to ð2k; 0Þ (but one level higher) and a falling segment. Thus XnÀ1 CnðtÞ¼tð0Þ CkðEtÞCnÀkÀ1ðtÞ; C0ðtÞ¼1: ð1:6Þ k¼0 Here Et denotes the shifted sequence Et ¼ðtð1Þ; tð2Þ; ...Þ. This is an analogue of the recursion XnÀ1 Cn ¼ CkCnÀkÀ1; C0 ¼ 1; k¼0 for the classical Catalan numbers. Since 2nþ1 2n n Lðx Þ¼0 and Lðx Þ¼ðÀ1Þ CnðtÞ we get Theorem 1. Let L be the linear functional on the vector space P of all polynomials defined by (1.4). This can be characterized by 2n n 2nþ1 Lðx Þ¼ðÀ1Þ CnðtÞ; Lðx Þ¼0 ð1:7Þ for all n 2 N. This theorem (cf. [5]) gives a connection between t-Fibonacci polynomials and t-Catalan numbers. The purpose of this paper is to show another connection between these numbers. First we propose an elementary method using LU-factorization (cf. e.g. [8], where also other methods for treating Hankel determinants are listed). To this end we generalize two well-known triangular Catalan matrices (cf. e.g. [1, 4, 9]): Let cðn; kÞ¼a2n;2k: ð1:8Þ This gives cðn; 0Þ¼CnðtÞ. 146 J. Cigler Then it is clear that the following recursion holds: cð0; kÞ¼½k ¼ 0 cðn; 0Þ¼tð0Þcðn À 1; 0Þþtð0Þtð1Þcðn À 1; 1Þ; n > 0; cðn; kÞ¼cðn À 1; k À 1Þþðtð2k À 1Þþtð2kÞÞcðn À 1; kÞþ þ tð2kÞtð2k þ 1Þcðn À 1; k þ 1Þ; n > 0; k > 0: ð1:9Þ We may interpret cðn; kÞ as the weight of another sort of nonnegative lattice paths from ð0; 0Þ to ðn; kÞ with upward, downward and horizontal steps, where each upward step has weight 1, each downward step ending at height k has weight tð2kÞtð2k þ 1Þ and each horizontal step in height k has weight tð2k À 1Þþtð2kÞ. Setting pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ccðn; kÞ¼ tð0Þtð1Þtð2k À 1Þcðn; kÞð1:10Þ we get another weight on these lattice paths which is symmetric, i.e. upward steps and downward steps between the same heights have the same weight. Furthermore we have ccðn; 0Þ¼cðn; 0Þ¼CnðtÞ. They satisfy ccð0; kÞ¼½k ¼ 0 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ccðn; 0Þ¼tð0Þccðn À 1; 0Þþ tð0Þtð1Þcðn À 1; 1Þ; n > 0; pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ccðn; kÞ¼ tð2k À 2Þtð2k À 1Þccðn À 1; k À 1Þþ þðtð2k À 1Þþtð2kÞÞccðn À 1; kÞþ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi þ tð2kÞtð2k þ 1Þcðn À 1; k þ 1Þ; n > 0; k > 0: ð1:11Þ If we decompose a lattice path from ð0; 0Þ to ðm þ n; 0Þ into a path from ð0; 0Þ to ðm; kÞ and a second path from ðm; kÞ to ðm þ n; 0Þ, then the weight of the second path is identical with ccðn; kÞ because of the symmetry. This gives the identity X ccðm; kÞccðn; kÞ¼ccðm þ n; 0Þð1:12Þ k0 or equivalently X cðm; kÞcðn; kÞtð0Þtð1Þtð2k À 1Þ¼cðm þ n; 0Þ¼CmþnðtÞ: k0 This may be interpreted in the following form: Consider the triangular matrices nÀ1 Pn ¼ðccði; jÞÞi; j¼0: ð1:13Þ Some Relations Between Generalized Fibonacci and Catalan Numbers 147 Then t nÀ1 PnPn ¼ðCiþjðtÞÞi; j¼0: ð1:14Þ This leads immediately to the determinant of the Hankel matrix YnÀ1 nÀ1 t det ðCiþjðtÞÞi; j¼0 ¼ detPnPn ¼ tð0Þtð1Þtð2k À 1Þð1:15Þ k¼0 For the second Catalan matrix let dðn; kÞ¼a2nþ1;2kþ1: ð1:16Þ Then dðn; 0Þ¼a2nþ1;1 ¼ a2nþ2;0 ¼ Cnþ1ðtÞ: ð1:17Þ The recursion takes now the following form: dð0; kÞ¼tð0Þ½k ¼ 0 dðn; 0Þ¼ðtð0Þþtð1ÞÞdðn À 1; 0Þþtð1Þtð2Þdðn À 1; 1Þ; n > 0; dðn; kÞ¼dðn À 1; k À 1Þþðtð2kÞþtð2k þ 1ÞÞdðn À 1; kÞþ þ tð2k þ 1Þtð2k þ 2Þdðn À 1; k þ 1Þ; n > 0; k > 0: ð1:18Þ Setting pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi tð1Þtð2kÞ ddðn; kÞ¼ dðn; kÞð1:19Þ tð0Þ we get another weight on these lattice paths which is symmetric and satisfies ddð0; kÞ¼½k ¼ 0. This gives the identity X ddðm; kÞddðn; kÞ¼ddðm þ n; 0Þ¼Cmþnþ1ðtÞð1:20Þ k0 or equivalently X dðm; kÞdðn; kÞtð1Þtð2kÞ¼tð0Þdðm þ n; 0Þ¼tð0ÞCmþnþ1ðtÞ: k0 This result may be interpreted in the following form: Consider the triangular matrices nÀ1 Qn ¼ðddði; jÞÞi; j¼0: ð1:21Þ 148 J. Cigler Then t nÀ1 QnQn ¼ðCiþjþ1ðtÞÞi; j¼0 ð1:22Þ and we get the determinant of the second Hankel matrix Yn nÀ1 t detðCiþjþ1ðtÞÞi;j¼0 ¼detQnQn ¼ tð0Þtð1Þtð2Þtð2kÀ2Þ: ð1:23Þ k¼0 Remark. This implies that t t det QnQn ¼ tð0Þtð2ÞÁÁtð2n À 2Þdet PnPn: ð1:24Þ The most important special cases are the following: 1) tðnÞ¼qns: The Carlitz q-Fibonacci polynomials and the Carlitz q-Catalan numbers. Here we get ([2–4]) n PnÀ1 n n YnÀ1 2 ðnÀ1Þnð4nÀ5Þ 2 2 i À 2 tð0Þtð1ÞÁÁtð2k À 1Þ¼q 6 s 2 ¼ q i¼0 2 s 2 k¼0 and PnÀ1 n Yn 2 i2þ nðnÀ1Þð4nþ1Þ n2 n2 tð0Þtð1ÞÁÁtð2k À 2Þ¼q 6 s ¼ q i¼0 2 s : k¼0 It should be noted that in this case k XnÀ1 n À k À 1 2 F ðx; s; qÞ¼ q 2 skxnÀ2kÀ1: n k k¼0 2) Another interesting special case arises for tð2kÞ¼rqk; tð2k þ 1Þ¼sqk; where r and s are positive real numbers. The corresponding Fibonacci polynomials are 0; 1; x; x2 þ r; x3 þ rx þ sx; x4 þ rx2 þ qrx2 þ sx2 þ qr2; ...: The corresponding Catalan numbers Cnðq; r; sÞ (the Polya- Gessel q-Catalan numbers) are 1; r; r2 þ rs; r3 þ 2r2s þ qr2s þ rs2; ...: Some Relations Between Generalized Fibonacci and Catalan Numbers 149 They satisfy the recurrence (cf. [4, 7]) XnÀ1 k Cnþ1ðq; r; sÞ¼rCnðq; r; sÞþs q Ckðq; r; sÞCnÀkðq; r; sÞ: k¼0 In this case we have ([4]) n n YnÀ1 2 tð0Þtð1Þtð2k À 1Þ¼q 3 ðrsÞ 2 k¼0 and PnÀ1 n þ 1 n Yn k2 tð0Þtð1Þtð2k À 2Þ¼q k¼0 r 2 s 2 : k¼0 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    12 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us