Withnormaliz

Withnormaliz

Publications with references to Normaliz [1] ABBOTT, J., AND BIGATTI, A. M. What is new in CoCoA? In Mathemat- ical software – ICMS 2014. 4th international congress, Seoul, South Korea, August 5–9, 2014. Proceedings. Berlin: Springer, 2014, pp. 352–358. [2] ABBOTT, J., AND BIGATTI, A. M. New in cocoa-5.2. 2 and cocoalib- 0.99560 for sc-square. In SC2@ ISSAC (2017). [3] AHMED, M., DE LOERA JESUS´ , AND HEMMECKE, R. Polyhedral cones of magic cubes and squares. In Discrete and computational geometry. The Goodman-Pollack Festschrift. Berlin: Springer, 2003, pp. 25–41. [4] AHMED, M. M. Algebraic combinatorics of magic squares. PhD thesis, University of California, Davis, 2004. [5] AL-AYYOUB, I., JARADAT, I., AND AL-ZOUBI, K. On the normality of a class of monomial ideals via the newton polyhedron. Mediterranean Journal of Mathematics 16, 3 (2019), 77. [6] ALCANTAR´ , A. The equations of the cone associated to the rees algebra of the ideal of square-free k-products. Morfismos 5, 1 (2001), 17–27. [7] ALIEV, I., DE LOERA, J. A., AND LOUVEAUX, Q. Integer programs with prescribed number of solutions and a weighted version of Doignon-Bell- Scarf’s theorem. In Integer programming and combinatorial optimization, vol. 8494 of Lecture Notes in Comput. Sci. Springer, Cham, 2014, pp. 37– 51. 1 [8] ALIEV, I., DE LOERA, J. A., AND LOUVEAUX, Q. Semigroups of poly- hedra with prescribed number of lattice points and the k-frobenius problem. arXiv preprint arXiv:1409.5259 (2014). [9] ALIEV, I., DE LOERA, J. A., AND LOUVEAUX, Q. Parametric polyhedra with at least k lattice points: Their semigroup structure and the k-frobenius problem. In Recent trends in Combinatorics. Springer, 2016, pp. 753–778. [10] ALTMANN, K., AND KASTNER, L. Negative deformations of toric sin- gularities that are smooth in codimension two. In Deformations of surface singularities. Berlin: Springer; Budapest: Janos´ Bolyai Mathematical So- ciety, 2013, pp. 13–55. [11] ASSARF, B., GAWRILOW, E., HERR, K., JOSWIG, M., LORENZ, B., PAFFENHOLZ, A., AND REHN, T. Computing convex hulls and counting integer points with polymake. Mathematical Programming Computation 9, 1 (2017), 1–38. [12] ASSI, A., AND GARC´IA-SANCHEZ´ , P. A. Numerical semigroups and applications. Cham: Springer, 2016. [13] AVIS, D., AND JORDAN, C. mplrs: A scalable parallel vertex/facet enu- meration code. Mathematical Programming Computation 10, 2 (2018), 267–302. [14] BACHLE¨ , A., AND CAICEDO, M. On the prime graph question for almost simple groups with an alternating socle. International Journal of Algebra and Computation 27, 03 (2017), 333–347. [15] BACHLE¨ , A., HERMAN, A., KONOVALOV, A., MARGOLIS, L., AND SINGH, G. The status of the zassenhaus conjecture for small groups. Ex- perimental Mathematics (2017), 1–6. [16] BACHLE¨ , A., KIMMERLE, W., AND MARGOLIS, L. Algorithmic aspects of units in group rings. In Algorithmic and Experimental Methods in Alge- bra, Geometry, and Number Theory. Springer, 2017, pp. 1–22. [17] BACHLE¨ , A., AND MARGOLIS, L. On the prime graph question for inte- gral group rings of 4-primary groups I. Internat. J. Algebra Comput. 27, 6 (2017), 731–767. 2 [18] BACHLE¨ , A., AND MARGOLIS, L. Help: a gap package for torsion units in integral group rings. Journal of Software for Algebra and Geometry 8, 1 (2018), 1–9. [19] BECK, M., HAASE, C., AND SAM, S. V. Grid graphs, Gorenstein poly- topes, and domino stackings. Graphs Comb. 25, 4 (2009), 409–426. [20] BECK, M., ROBINS, S., AND SAM, S. V. Positivity theorems for solid- angle polynomials. Beitr. Algebra Geom. 51, 2 (2010), 493–507. [21] BERNSTEIN, D. I., AND SULLIVANT, S. Normal binary hierarchical mod- els. Exp. Math. 26, 2 (2017), 153–164. [22] BIGDELI, M., HERZOG, J., HIBI, T., QURESHI, A. A., AND SHIKAMA, A. Isotonian algebras. Nagoya Math. J. 230 (2018), 83–101. [23] BOFFI, G., AND LOGAR, A. Computing Grobner¨ bases of pure binomial n ideals via submodules of Z . J. Symb. Comput. 47, 10 (2012), 1297–1308. [24] BOFFI, G., AND LOGAR, A. Border bases for lattice ideals. Journal of Symbolic Computation 79 (2017), 43–56. [25] BOGART, T., HAASE, C., HERING, M., LORENZ, B., NILL, B., PAF- FENHOLZ, A., ROTE, G., SANTOS, F., AND SCHENCK, H. Finitely many smooth d-polytopes with n lattice points. Isr. J. Math. 207 (2015), 301–329. [26] BOGART, T., RAYMOND, A., AND THOMAS, R. Small Chvatal´ rank. Math. Program. 124, 1-2 (B) (2010), 45–68. [27] BOHM¨ , J., DECKER, W., KEICHER, S., AND REN, Y. Current challenges in developing open source computer algebra systems. In Mathematical as- pects of computer and information sciences. 6th international conference, MACIS 2015, Berlin, Germany, November 11–13, 2015. Revised selected papers. Cham: Springer, 2016, pp. 3–24. [28] BOHM¨ , J., EISENBUD, D., AND NITSCHE, M. J. Decomposition of semi- group algebras. Exp. Math. 21, 4 (2012), 385–394. [29] BONANZINGA, V., ESCOBAR, C. A., AND VILLARREAL, R. H. On the normality of Rees algebras associated to totally unimodular matrices. Re- sult. Math. 41, 3-4 (2002), 258–264. 3 [30] BOROWKA, S., HEINRICH, G., JAHN, S., JONES, S., KERNER, M., AND SCHLENK, J. Numerical evaluation of two-loop integrals with pysecdec. arXiv preprint arXiv:1712.05755 (2017). [31] BOROWKA, S., HEINRICH, G., JAHN, S., JONES, S., KERNER, M., AND SCHLENK, J. A gpu compatible quasi-monte carlo integrator interfaced to pysecdec. Computer Physics Communications (2019). [32] BOROWKA, S., HEINRICH, G., JAHN, S., JONES, S., KERNER, M., SCHLENK, J., AND ZIRKE, T. pysecdec: a toolbox for the numerical eval- uation of multi-scale integrals. Computer Physics Communications 222 (2018), 313–326. [33] BOROWKA, S., HEINRICH, G., JONES, S., KERNER, M., SCHLENK, J., AND ZIRKE, T. Secdec-3.0: numerical evaluation of multi-scale integrals beyond one loop. Computer Physics Communications 196 (2015), 470– 491. [34] BOUCKAERT, R., HEMMECKE, R., LINDNER, S., AND STUDENY´ , M. Efficient algorithms for conditional independence inference. J. Mach. Learn. Res. 11 (2010), 3453–3479. [35] BRANDT, F., GEIST, C., AND STROBEL, M. Analyzing the practical rel- evance of voting paradoxes via Ehrhart theory, computer simulations, and empirical data. In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems (2016), International Founda- tion for Autonomous Agents and Multiagent Systems, pp. 385–393. [36] BRENNAN, J. P., DUPONT, L. A., AND VILLARREAL, R. H. Duality, a- invariants and canonical modules of rings arising from linear optimization problems. Bull. Math. Soc. Sci. Math. Roum., Nouv. Ser.´ 51, 4 (2008), 279– 305. [37] BREUER, F. An invitation to Ehrhart theory: polyhedral geometry and its applications in enumerative combinatorics. In Computer algebra and polynomials. Springer International Publishing, 2015, pp. 1–29. [38] BREUER, F., AND ZAFEIRAKOPOULOS, Z. Polyhedral omega: a new algorithm for solving linear Diophantine systems. Ann. Comb. 21, 2 (2017), 211–280. 4 [39] BRUNS, W. On the integral Caratheodory´ property. Exp. Math. 16, 3 (2007), 359–365. [40] BRUNS, W. The quest for counterexamples in toric geometry. In Commuta- tive algebra and algebraic geometry. Proceedings of the international con- ference (CAAG-2010), Bangalore, India, December 6–10, 2010, in honour of Balwant Singh, Uwe Storch and Rajendra V. Gurjar. Mysore: Ramanu- jan Mathematical Society, 2013, pp. 45–61. [41] BRUNS, W. Binomial regular sequences and free sums. Acta Math. Viet- nam. 40, 1 (2015), 71–83. [42] BRUNS, W., AND CONCA, A. Linear resolutions of powers and products. In Singularities and Computer Algebra. Springer, 2017, pp. 47–69. [43] BRUNS, W., AND CONCA, A. Products of Borel fixed ideals of maximal minors. Adv. Appl. Math. 91 (2017), 1–23. [44] BRUNS, W., GARCIA-SANCHEZ, P., O’NEILL, C., AND WILBURNE, D. Wilf’s conjecture in fixed multiplicity. arXiv preprint arXiv:1903.04342 (2019). [45] BRUNS, W., GARC´IA-SANCHEZ´ , P. A., AND MOCI, L. The monoid of monotone functions on a poset and arithmetic multiplicities for uniform matroids. arXiv preprint arXiv:1902.00864 (2019). [46] BRUNS, W., AND GUBELADZE, J. Normality and covering properties of affine semigroups. J. Reine Angew. Math. 510 (1999), 161–178. [47] BRUNS, W., AND GUBELADZE, J. Polytopes, rings, and K-theory. New York, NY: Springer, 2009. [48] BRUNS, W., GUBELADZE, J., HENK, M., MARTIN, A., AND WEISMAN- TEL, R. A counterexample to an integer analogue of Caratheodory’s´ theo- rem. J. Reine Angew. Math. 510 (1999), 179–185. [49] BRUNS, W., GUBELADZE, J., AND MICHAŁEK, M. Quantum jumps of normal polytopes. Discrete Comput. Geom. 56, 1 (2016), 181–215. [50] BRUNS, W., GUBELADZE, J., AND NGOˆ VIETˆ TRUNG. Problems and algorithms for affine semigroups. Semigroup Forum 64, 2 (2002), 180– 212. 5 [51] BRUNS, W., ICHIM, B., AND SOGER¨ , C. Computations of volumes and Ehrhart series in four candidates elections. Annals of Operations Research (2019), 1–25. [52] BRUNS, W., AND RESTUCCIA, G. Canonical modules of Rees algebras. J. Pure Appl. Algebra 201, 1-3 (2005), 189–203. [53] BUBBOLONI, D., DISS, M., AND GORI, M. Extensions of the simp- son voting rule to the committee selection setting. https://halshs.archives- ouvertes.fr/halshs-01827668/ (2017). [54] BURTON, B. A. Computational topology with Regina: algorithms, heuris- tics and implementations. In Geometry and topology down under. A con- ference in honour of Hyam Rubinstein, Melbourne, Australia, July 11– 22, 2011. Proceedings. Providence, RI: American Mathematical Society (AMS), 2013, pp. 195–224. [55] BURTON, B. A., AND OZLEN, M. Computing the crosscap number of a knot using integer programming and normal surfaces. ACM Trans. Math. Softw. 39, 1 (2012), 18. [56] CABOARA, M., AND FARIDI, S. Odd-cycle-free facet complexes and the Konig¨ property. Rocky Mt. J. Math. 41, 4 (2011), 1059–1079. [57] CAMERON, A., DINU, R., MICHAŁEK, M., AND SEYNNAEVE, T. Flag matroids: algebra and geometry. arXiv preprint arXiv:1811.00272 (2018).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us