C H a P T E R 2 Polynomial and Rational Functions

C H a P T E R 2 Polynomial and Rational Functions

CHAPTER 2 Polynomial and Rational Functions Section 2.1 Quadratic Functions and Models . 136 Section 2.2 Polynomial Functions of Higher Degree . 151 Section 2.3 Polynomial and Synthetic Division . 168 Section 2.4 Complex Numbers . 180 Section 2.5 Zeros of Polynomial Functions . 187 Section 2.6 Rational Functions . 205 Section 2.7 Nonlinear Inequalities . 222 Review Exercises . 237 Problem Solving . 258 Practice Test . 262 CHAPTER 2 Polynomial and Rational Functions Section 2.1 Quadratic Functions and Models You should know the following facts about parabolas. ■ f ͑x͒ ϭ ax2 ϩ bx ϩ c, a 0, is a quadratic function, and its graph is a parabola. ■ If a > 0, the parabola opens upward and the vertex is the point with the minimum y-value. If a < 0, the parabola opens downward and the vertex is the point with the maximum y-value. ■ The vertex is ͑Ϫb͞2a, f ͑Ϫb͞2a͒͒. ■ To find the x-intercepts (if any), solve ax2 ϩ bx ϩ c ϭ 0. ■ The standard form of the equation of a parabola is f ͑x͒ ϭ a͑x Ϫ h͒2 ϩ k where a 0. (a) The vertex is ͑h, k͒. (b) The axis is the vertical line x ϭ h. Vocabulary Check 1. nonnegative integer; real 2. quadratic; parabola 3. axis or axis of symmetry 4. positive; minimum 5. negative; maximum 1. f ͑x͒ ϭ ͑x Ϫ 2͒2 opens upward and has vertex ͑2, 0͒. 2. f ͑x͒ ϭ ͑x ϩ 4͒2 opens upward and has vertex ͑Ϫ4, 0͒. Matches graph (g). Matches graph (c). 3. f ͑x͒ ϭ x2 Ϫ 2 opens upward and has vertex ͑0, Ϫ2͒. 4. f ͑x͒ ϭ 3 Ϫ x2 opens downward and has vertex ͑0, 3͒. Matches graph (b). Matches graph (h). 5. f ͑x͒ ϭ 4 Ϫ ͑x Ϫ 2͒2 ϭϪ͑x Ϫ 2͒2 ϩ 4 opens downward 6. f ͑x͒ ϭ ͑x ϩ 1͒2 Ϫ 2 opens upward and has vertex and has vertex ͑2, 4͒. Matches graph (f). ͑Ϫ1, Ϫ2͒. Matches graph (a). 7. f ͑x͒ ϭϪ͑x Ϫ 3͒2 Ϫ 2 opens downward and has 8. f ͑x͒ ϭϪ͑x Ϫ 4͒2 opens downward and has vertex ͑4, 0͒. vertex ͑3, Ϫ2͒. Matches graph (e). Matches graph (d). 136 Section 2.1 Quadratic Functions and Models 137 ϭ 1 2 ϭϪ1 2 9. (a) y 2x (b) y 8x y y 5 6 4 4 3 2 2 x −6 −4 46 1 −2 x −4 −3 −2 −1 123 −1 −6 Vertical shrink Vertical shrink and reflection in the x-axis ϭ 3 2 ϭϪ 2 (c) y 2x (d) y 3x y y 5 6 4 4 3 2 2 x −6 −4 −2 246 1 x −3 −2 −1 123 −1 Vertical stretch Vertical stretch and reflection in the x-axis 10. (a) y ϭ x2 ϩ 1 (b) y ϭ x2 Ϫ 1 y y 5 4 4 3 3 2 2 1 x −3 −2 23 x −3 −2 −1 123 −1 −2 Vertical translation one unit upward Vertical translation one unit downward (c) y ϭ x2 ϩ 3 (d) y ϭ x2 Ϫ 3 y y 10 8 8 6 6 4 x −6–4 46 x −6 −4 −2 246 −2 −4 Vertical translation three units upward Vertical translation three units downward 138 Chapter 2 Polynomial and Rational Functions 11. (a) y ϭ ͑x Ϫ 1͒2 (b) y ϭ ͑3x͒2 ϩ 1 y y 5 5 4 4 3 3 x x − − 2 1 1234 −3 −2 −1 1 23 − 1 −1 Horizontal translation one unit to the right Horizontal shrink and a vertical translation one unit upward ϭ ͑1 ͒2 Ϫ ϭ ͑ ϩ ͒2 (c) y 3x 3 (d) y x 3 y y 8 10 6 8 4 2 x 2 −6 −226 −2 x −8 −6 −4 −224 −4 −2 Horizontal stretch and a vertical translation three units Horizontal translation three units to the left downward ϭϪ1͑ Ϫ ͒2 ϩ ϭ ͓1͑ Ϫ ͔͒ 2 Ϫ 12. (a) y 2 x 2 1 (b) y 2 x 1 3 y y 8 10 6 8 4 6 4 x −6 −4 −22 6810 x −8268−6 −4 −4 −6 Horizontal translation two units to the right, vertical Horizontal translation one unit to the right, horizontal ͑ 1͒ shrink each y-value is multiplied by 2 , reflection in stretch (each x-value is multiplied by 2), and vertical the x-axis, and vertical translation one unit upward translation three units downward ϭϪ1͑ ϩ ͒2 Ϫ 2 (c) y 2 x 2 1 (d) y ϭ ͓2͑x ϩ 1͔͒ ϩ 4 y y 6 7 4 2 4 x −8 −6 −4 264 3 2 −4 1 −6 x −4234−3 −2 −1 1 − −8 1 Horizontal translation two units to the left, vertical Horizontal translation one unit to the left, horizontal ͑ 1͒ ͑ 1͒ shrink each y-value is multiplied by 2 , reflection in shrink each x-value is multiplied by 2 , and vertical trans- x-axis, and vertical translation one unit downward lation four units upward Section 2.1 Quadratic Functions and Models 139 13. f ͑x͒ ϭ x2 Ϫ 5 14. h͑x͒ ϭ 25 Ϫ x2 Vertex: ͑0, Ϫ5͒ Vertex: ͑0, 25͒ Axis of symmetry:x ϭ 0 or the y-axis Axis of symmetry: x ϭ 0 Find x-intercepts: y Find x-intercepts: y 2 x2 Ϫ 5 ϭ 0 Ϫ 2 ϭ 30 1 25 x 0 x 2 ϭ 2 x 5 −4 −3 −11 34 x ϭ 25 ϭ ±Ί −2 x 5 x ϭ ±5 −3 x-intercepts: x-intercepts: ͑±5, 0͒ x −20−10 10 20 ͑ϪΊ5, 0͒, ͑Ί5, 0͒ −6 ͑ ͒ ϭ 1 2 Ϫ ϭ 1͑ Ϫ ͒2 Ϫ ͑ ͒ ϭ ϭ 1 2 ϭϪ1 2 ϩ 15. f x 2x 4 2 x 0 4 16. f x 16 4x 4x 16 Vertex: ͑0, Ϫ4͒ Vertex: ͑0, 16͒ Axis of symmetry:x ϭ 0 or the y-axis Axis of symmetry: x ϭ 0 Find x-intercepts: y Find x-intercepts: y 3 1x2 Ϫ 4 ϭ 0 Ϫ 1 2 ϭ 18 2 2 16 4x 0 2 1 x ϭ 8 2 ϭ 12 x x 64 − − − ϭ ±Ί ϭ ± Ί 4 3 1 1234 9 x 8 2 2 x ϭ ±8 −2 6 x-intercepts: −3 x-intercepts: ͑±8, 0͒ 3 x − − − ͑Ϫ2Ί2, 0͒, ͑2Ί2, 0͒ −5 9 6 3 369 −3 17. f ͑x͒ ϭ ͑x ϩ 5͒2 Ϫ 6 y 18. f ͑x͒ ϭ ͑x Ϫ 6͒2 ϩ 3 y Vertex: ͑Ϫ5, Ϫ6͒ 20 Vertex: ͑6, 3͒ 50 16 40 Axis of symmetry: x ϭϪ5 12 Axis of symmetry: x ϭ 6 30 Find x-intercepts: Find x-intercepts: 20 ͑ ϩ ͒2 Ϫ ϭ x 2 x 5 6 0 −20 −12 4 8 ͑x Ϫ 6͒ ϩ 3 ϭ 0 10 2 2 x ͑x ϩ 5͒ ϭ 6 −8 ͑ Ϫ ͒ ϭϪ x 6 3 −20−10 10 20 30 x ϩ 5 ϭ ±Ί6 Not possible for real x x ϭϪ5 ± Ί6 No x-intercepts x-intercepts: ͑Ϫ5 Ϫ Ί6, 0͒, ͑Ϫ5 ϩ Ί6, 0͒ 19. h͑x͒ ϭ x2 Ϫ 8x ϩ 16 ϭ ͑x Ϫ 4͒2 20. g͑x͒ ϭ x2 ϩ 2x ϩ 1 ϭ ͑x ϩ 1͒2 Vertex: ͑4, 0͒ y Vertex: ͑Ϫ1, 0͒ y Axis of symmetry: x ϭ 4 20 Axis of symmetry: x ϭϪ1 6 5 ͑ ͒ 16 ͑Ϫ ͒ x-intercept: 4, 0 x-intercept: 1, 0 4 12 3 8 2 4 1 x x −4481216 −4 −3 −2 −112 140 Chapter 2 Polynomial and Rational Functions 5 1 21. f͑x͒ ϭ x2 Ϫ x ϩ 22. f ͑x͒ ϭ x2 ϩ 3x ϩ 4 4 1 1 5 9 9 1 ϭ ΂x2 Ϫ x ϩ ΃ Ϫ ϩ ϭ ΂x2 ϩ 3x ϩ ΃ Ϫ ϩ 4 4 4 4 4 4 1 2 3 2 ϭ ΂x Ϫ ΃ ϩ 1 ϭ ΂x ϩ ΃ Ϫ 2 2 2 1 3 Vertex: ΂ , 1΃ Vertex: ΂Ϫ , Ϫ2΃ y 2 2 4 1 3 3 Axis of symmetry: x ϭ y Axis of symmetry: x ϭϪ 2 2 2 5 1 Find x-intercepts: Find x-intercepts: x 4 −5 −4 −3 −2 −112 5 3 1 x2 Ϫ x ϩ ϭ 0 x2 ϩ 3x ϩ ϭ 0 −2 4 4 −3 1 ± Ί1 Ϫ 5 1 Ϫ3 ± Ί9 Ϫ 1 x ϭ x ϭ 2 x 2 −2 −1 123 Not a real number 3 ϭϪ ± Ί2 2 No x-intercepts 3 x-intercepts: ΂Ϫ ± Ί2, 0΃ 2 23. f ͑x͒ ϭϪx2 ϩ 2x ϩ 5 24. f ͑x͒ ϭϪx2 Ϫ 4x ϩ 1 ϭϪ͑x2 ϩ 4x͒ ϩ 1 ϭϪ͑x2 Ϫ 2x ϩ 1͒ Ϫ ͑Ϫ1͒ ϩ 5 ϭϪ͑x2 ϩ 4x ϩ 4͒ Ϫ ͑Ϫ4͒ ϩ 1 ϭϪ͑x Ϫ 1͒2 ϩ 6 ϭϪ͑x ϩ 2͒2 ϩ 5 Vertex: ͑1, 6͒ Vertex: ͑Ϫ2, 5͒ Axis of symmetry: x ϭ 1 Axis of symmetry: x ϭϪ2 Find x-intercepts: Find x-intercepts: Ϫx2 Ϫ 4x ϩ 1 ϭ 0 Ϫx2 ϩ 2x ϩ 5 ϭ 0 x2 ϩ 4x Ϫ 1 ϭ 0 x2 Ϫ 2x Ϫ 5 ϭ 0 Ϫ4 ± Ί16 ϩ 4 x ϭ 2 2 ± Ί4 ϩ 20 x ϭ 2 ϭϪ2 ± Ί5 ϭ 1 ± Ί6 x-intercepts: ͑Ϫ2 ± Ί5, 0͒ x-intercepts: ͑1 Ϫ Ί6, 0͒, ͑1 ϩ Ί6, 0͒ y 5 y 4 6 2 1 x −6 −5 −3 −2 −112 x − −42 6 2 −2 −3 −4 Section 2.1 Quadratic Functions and Models 141 25.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    129 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us