Digital Signal Processing Lecture Outline Discrete-Time Systems

Digital Signal Processing Lecture Outline Discrete-Time Systems

Lecture Outline ESE 531: Digital Signal Processing ! Discrete Time Systems ! LTI Systems ! LTI System Properties Lec 3: January 17, 2017 ! Difference Equations Discrete Time Signals and Systems Penn ESE 531 Spring 2017 - Khanna Penn ESE 531 Spring 2017 - Khanna 2 Discrete Time Systems Discrete-Time Systems Penn ESE 531 Spring 2017 - Khanna 4 System Properties Examples ! Causality ! Causal? Linear? Time-invariant? Memoryless? " y[n] only depends on x[m] for m<=n BIBO Stable? ! Linearity ! Time Shift: " Scaled sum of arbitrary inputs results in output that is a scaled sum of corresponding outputs " x[n]y[n =] x[n-m]= x[n − m] " Ax [n]+Bx [n] # Ay [n]+By [n] 1 2 1 2 ! Accumulator: ! Memoryless " y[n] n " y[n] depends only on x[n] y[n] = x[k] ! Time Invariance ∑ k=−∞ " Shifted input results in shifted output " x[n-q] # y[n-q] ! Compressor (M>1): ! BIBO Stability y[n] x[Mn] " A bounded input results in a bounded output (ie. max signal value = exists for output if max ) Penn ESE 531 Spring 2017 - Khanna 5 Penn ESE 531 Spring 2017 - Khanna 6 1 Non-Linear System Example Spectrum of Speech ! Median Filter " y[n]=MED{x[n-k], …x[n+k]} Speech " Let k=1 " y[n]=MED{x[n-1], x[n], x[n+1]} Corrupted Speech Penn ESE 531 Spring 2017 - Khanna 7 Penn ESE 531 Spring 2017 - Khanna 8 Low Pass Filtering Low Pass Filtering Corrupted Speech LP-Filtered Speech Penn ESE 531 Spring 2017 - Khanna 9 Penn ESE 531 Spring 2017 - Khanna 10 Median Filtering LTI Systems Corrupted Speech Med-Filter Speech Penn ESE 531 Spring 2017 - Khanna 11 Penn ESE 531 Spring 2017 - Khanna 12 2 LTI Systems Convolution ! LTI system can be completely characterized by its impulse response ! Then the output for an arbitrary input is a sum of weighted, delay impulse responses y[n] = x[n]∗h[n] Penn ESE 531 Spring 2017 - Khanna 13 Convolution Example Convolution Example Penn ESE 531 Spring 2017 - Khanna 15 Penn ESE 531 Spring 2017 - Khanna 16 Convolution is Commutative LTI Systems in Series Penn ESE 531 Spring 2017 - Khanna 17 Penn ESE 531 Spring 2017 - Khanna 18 3 LTI Systems in Parallel Example Penn ESE 531 Spring 2017 - Khanna 19 Penn ESE 531 Spring 2017 - Khanna 20 Causal System Revisited Duration of Impulse Penn ESE 531 Spring 2017 - Khanna 21 Penn ESE 531 Spring 2017 - Khanna 22 Duration of Impulse BIBO Stability Revisited Penn ESE 531 Spring 2017 - Khanna 23 Penn ESE 531 Spring 2017 - Khanna 24 4 BIBO Stability Revisited BIBO Stability – Sufficient Condition Penn ESE 531 Spring 2017 - Khanna 25 Penn ESE 531 Spring 2017 - Khanna 26 BIBO Stability – Sufficient Condition BIBO Stability – Sufficient Condition Penn ESE 531 Spring 2017 - Khanna 27 Penn ESE 531 Spring 2017 - Khanna 28 BIBO Stability – Necessary Condition BIBO Stability – Necessary Condition Penn ESE 531 Spring 2017 - Khanna 29 Penn ESE 531 Spring 2017 - Khanna 30 5 BIBO Stability – Necessary Condition BIBO Stability – Necessary Condition Penn ESE 531 Spring 2017 - Khanna 31 Penn ESE 531 Spring 2017 - Khanna 32 Examples Example Penn ESE 531 Spring 2017 - Khanna 33 Penn ESE 531 Spring 2017 - Khanna 34 Difference Equations Difference Equations ! Accumulator example ! Accumulator example n n y[n] = ∑ x[k] y[n] = ∑ x[k] k=−∞ k=−∞ n−1 n−1 y[n] = x[n]+ ∑ x[k] y[n] = x[n]+ ∑ x[k] k=−∞ k=−∞ y[n] = x[n]+ y[n −1] y[n] = x[n]+ y[n −1] y[n]− y[n −1] = x[n] y[n]− y[n −1] = x[n] N M a y[n k] b y[n m] ∑ k − = ∑ m − k=0 m=0 Penn ESE 531 Spring 2017 - Khanna 35 Penn ESE 531 Spring 2017 - Khanna 36 6 Difference Equations Big Ideas ! Accumulator example ! LTI Systems are a special class of systems with n significant signal processing applications y[n] = ∑ x[k] " Can be characterized by the impulse response k=−∞ ! LTI System Properties n−1 y[n] = x[n]+ ∑ x[k] " Causality and stability can be determined from impulse k=−∞ response y[n] = x[n]+ y[n −1] ! Difference equations suggest implementation of y[n]− y[n −1] = x[n] systems " Give insight into complexity of system N M " More on this next time… a y[n k] b y[n m] ∑ k − = ∑ m − k=0 m=0 Penn ESE 531 Spring 2017 - Khanna 37 Penn ESE 531 Spring 2017 - Khanna 38 Admin ! Homework schedule changed " Due on Fridays at midnight instead of Thursday " Course calendar updated ! HW 1 out now " Due 1/27 at midnight " Submit in Canvas Penn ESE 531 Spring 2017 - Khanna 39 7 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us