Quantum Algorithms for Classification

Quantum Algorithms for Classification

Quantum algorithms for classification Alessandro Luongo Twitter: @scinawa https://luongo.pro/qml 26-30-2018, Paris, International Conference on Quantum Computing 1 Prologue 2 Toolbox 3 Quantum algorithms for classification.. Quantum Slow Feature Analysis Quantum Frobenius Distance Classifier q-means 4 ..on real data • Classification • Classification Unsupervised methods Supervised methods × × × X 2 Rn d X 2 Rn d; Y 2 Rn m • Anomaly detection • Regression • Clustering • Pattern recognition • Blind signal separation • Time series forecasting • Text mining • Speech recognition Unsupervised methods Supervised methods × × × X 2 Rn d X 2 Rn d; Y 2 Rn m • Anomaly detection • Regression • Clustering • Pattern recognition • Blind signal separation • Time series forecasting • Text mining • Speech recognition • Classification • Classification Unsupervised Unsupervised Unsupervised Supervised We need Quantum Machine Learning! runtime = O(polylog(size)) [HHL09] ... ML’s algos: runtime = O(poly(size)) = O(poly(n; d))... ... but size = O(2time)... ) problem! ML’s algos: runtime = O(poly(size)) = O(poly(n; d))... ... but size = O(2time)... ) problem! We need Quantum Machine Learning! runtime = O(polylog(size)) [HHL09] ... QML team @ IRIF • Iordanis Kerenidis • Jonas Landman • Anupam Prakash Takeaways • There is an efficient quantum procedure for supervised dimensionality reduction: Quantum Slow Feature Analysis • There is an efficient quantum procedure for supervised classification and distance calculation: Quantum Frobenius Distance Estimator . • There is a new efficient quantum procedure for unsupervised classification: q-means • We simulate quantum algorithm on real data: they work! • QRAM based. Xn q 1 k k j i j i P xi i xi n k k2 i=0 xi i=0 • Execution time: O(log nd) • Preparation time: O(nd log nd) • Size: O(nd log nd) 1 - QRAM Let X 2 Rn×d. There is a quantum algorithm that −1 jii j0i ! jii jxii jxii = kxik jxii • Execution time: O(log nd) • Preparation time: O(nd log nd) • Size: O(nd log nd) 1 - QRAM Let X 2 Rn×d. There is a quantum algorithm that −1 jii j0i ! jii jxii jxii = kxik jxii Xn q 1 k k j i j i P xi i xi n k k2 i=0 xi i=0 1 - QRAM Let X 2 Rn×d. There is a quantum algorithm that −1 jii j0i ! jii jxii jxii = kxik jxii Xn q 1 k k j i j i P xi i xi n k k2 i=0 xi i=0 • Execution time: O(log nd) • Preparation time: O(nd log nd) • Size: O(nd log nd) QRAM [[2,3,4],[5,6,7],[8,9,10]] QRAM + swaps... better Thanks Alex Singh for the circuit (ii) jzi such that kjzi − jMxik ≤ ϵ e in time O(κ(M)µ(M) log(1/ϵ)) j + i (iii) a state M≤θM≤θx ~ µ(M)kxk in time O( k + k) δθ M≤θM≤θx Get estimates of kzk = f(M)x (with mult. error ϵ2, time · −1 O() ϵ2 ) Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018). 2 - Q-BLAS 2 Rd×d k k - M , s.t. M 2 = 1, in QRAM - x 2 Rd in QRAM. There is a quantum algorithm that w.h.p. returns : −1 (i) jzi such that jzi − jM xi ≤ ϵ e in time O(κ(M)µ(M) log(1/ϵ)) j + i (iii) a state M≤θM≤θx ~ µ(M)kxk in time O( k + k) δθ M≤θM≤θx Get estimates of kzk = f(M)x (with mult. error ϵ2, time · −1 O() ϵ2 ) Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018). 2 - Q-BLAS 2 Rd×d k k - M , s.t. M 2 = 1, in QRAM - x 2 Rd in QRAM. There is a quantum algorithm that w.h.p. returns : −1 (i) jzi such that jzi − jM xi ≤ ϵ e in time O(κ(M)µ(M) log(1/ϵ)) (ii) jzi such that kjzi − jMxik ≤ ϵ e in time O(κ(M)µ(M) log(1/ϵ)) Get estimates of kzk = f(M)x (with mult. error ϵ2, time · −1 O() ϵ2 ) Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018). 2 - Q-BLAS 2 Rd×d k k - M , s.t. M 2 = 1, in QRAM - x 2 Rd in QRAM. There is a quantum algorithm that w.h.p. returns : −1 (i) jzi such that jzi − jM xi ≤ ϵ e in time O(κ(M)µ(M) log(1/ϵ)) (ii) jzi such that kjzi − jMxik ≤ ϵ e in time O(κ(M)µ(M) log(1/ϵ)) j + i (iii) a state M≤θM≤θx ~ µ(M)kxk in time O( k + k) δθ M≤θM≤θx 2 - Q-BLAS 2 Rd×d k k - M , s.t. M 2 = 1, in QRAM - x 2 Rd in QRAM. There is a quantum algorithm that w.h.p. returns : −1 (i) jzi such that jzi − jM xi ≤ ϵ e in time O(κ(M)µ(M) log(1/ϵ)) (ii) jzi such that kjzi − jMxik ≤ ϵ e in time O(κ(M)µ(M) log(1/ϵ)) j + i (iii) a state M≤θM≤θx ~ µ(M)kxk in time O( k + k) δθ M≤θM≤θx Get estimates of kzk = f(M)x (with mult. error ϵ2, time · −1 O() ϵ2 ) Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018). 2.5 - Q-BLAS - A; B 2 Rd×d in QRAM k k k k A 2 = B 2 = 1, in QRAM - x 2 Rd in QRAM. There is a quantum algorithm that w.h.p. returns : −1 (i) jzi such that jzi − j(AB) xi ≤ ϵ (ii) jzi such that kjzi − j(AB)xik ≤ ϵ j + i (iii) a state (AB)≤θ,δ(AB)≤θ,δx Get estimates of kzk = f(AB)x (with mult. error ϵ2, time · −1 O() ϵ2 ) Gilyén, András, et al. ”Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics.” arXiv preprint arXiv:1806.01838 (2018). • Before: Quantum Singular Value Estimation X X αi jvii 7! αi jvii jσii i i • Now: Qubitization: W = eiϕ0σz eiθσx eiϕ1σz eiθσx ··· eiϕkσz eiθσx Family of possible W is large enough... 3 - Compute distances × × V 2 Rn d; C 2 Rk d in the QRAM, and ϵ > 0 ( ) e η There is a quantum algorithm that w.h.p. and in time O ϵ jii jji j0i 7! jii jji jd(vi; cj)i maxkvik where jd(vi; cj) − d(vi; cj)j 6 ϵ , where η = . minkvik Based on: Wiebe, N., Kapoor, A., & Svore, K. (2014). Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning. arXiv preprint arXiv:1401.2142. 3 - sketch proof • Use Quantum Frobenius Dinstance to build: k k pvi pcj jii jji j0i jvii + jii jji j1i jcji Zij Zij • Hadamard on 3rd qubit. 2 1 2 2 d(vi; cj) p(1)ij = (kvik + cj −2 kvik cj hvi; cji) = 2Zij 2Zij • Perform amplitude estimation on L copies. • Use Median Lemma (Wiebe et. al.) • Invert circuit (garbage collection), multiply by 2Zij. 4 - Tomography For a pure quantum state jxi, there is a tomography algorithm with sample and time complexity O(d log d/ϵ2) that produces an estimate e 2 Rd kek ke − k ≤ x with x 2 = 1 such that x x 2 ϵ with probability at least (1 − 1=d0:83). Kerenidis, Iordanis, and Anupam Prakash. ”A quantum interior point method for LPs and SDPs.” arXiv preprint arXiv:1808.09266 (2018). PCA SFA || FLD AW = BWΛ Slow Feature Analysis (Supervised) Input signal: x(i) 2 Rd. Task: Learn K functions: y(i) = [g1(x(i)); ··· ; gK(x(i))] Such that 8j 2 [K]. Minimize: XK X ( ) 1 2 ∆(yj) = gj(x(s)) − gj(x(t)) a 2 k=1 s;t Tk s<t Constraints on output signal: average of components is 0, variance of components is 1, signals are decorrelated. Def Cov. matrix B := XTX, Derivative cov. matrix A := X_ TX_ Slow Feature Analysis (Supervised) Input signal: x(i) 2 Rd. Task: Learn K functions: y(i) = [g1(x(i)); ··· ; gK(x(i))] Such that 8j 2 [K]. Minimize: XK X ( ) 1 2 ∆(yj) = gj(x(s)) − gj(x(t)) a 2 k=1 s;t Tk s<t Constraints on output signal: average of components is 0, variance of components is 1, signals are decorrelated. Def Cov. matrix B := XTX, Derivative cov. matrix A := X_ TX_ AW = BWΛ Step 1: Whitening Data is whitened (sphered) if B = XTX = I. Whitening its just matrix (Moore-Penrose) inversion Z := X+X .. now ZTZ = I Freebie Theorem! There exists an efficient quantum algorithm for whitening that builds jZi Step 2: Projection • Whiten data jXi 7! jZi • Project data in slow feature space jZi 7! jYi New algo! QSFA P T 2 Rn×d _ 2 Rn log n×d - Let X = i σiuivi , X QRAM. - Let ϵ, θ; δ; η > 0. There exists a quantum algorithm that produces: • j i j j i − j + i j ≤ Y with Y A≤θ,δA≤θ,δZ ϵ in time (( ) ) (µ(X) + µ(X_)) jjZjj ~ κ( )µ( ) log( =") + × O X X 1 jj + jj δθ A≤θ,δA≤θ,δZ • kYk s.t. jkYk − kYk j ≤ η kYk with an additional 1/η factor. New algo! QFDC (Supervised) jTk|×d Xk 2 R matrix of elements labeled k jTk|×d X0 2 R repeats the row x0 for jTkj times.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    63 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us