
<p>Resonance In the Solar <br>System </p><p>Steve Bache </p><p>UNC Wilmington <br>Dept. of Physics and Physical Oceanography <br>Advisor : Dr. Russ Herman </p><p>Spring 2012 </p><p>Goal </p><p>•••</p><p>numerically investigate the dynamics of the asteroid belt relate old ideas to new methods reproduce known results </p><p>History </p><p>The role of science: </p><p>••</p><p>make sense of the world perceive order out of apparent randomness </p><p>History </p><p>The role of science: </p><p>•••</p><p>make sense of the world perceive order out of apparent randomness the sky and heavenly bodies </p><p>Anaximander (611-547 BC) </p><p>•</p><p>Greek philosopher, scientist </p><p>•</p><p>stars, moon, sun 1:2:3 </p><p>Figure: Anaximander’s Model </p><p>Pythagoras (570-495 BC) </p><p>••</p><p>Mathematician, philosopher, started a religion all heavenly bodies at whole number ratios </p><p>•</p><p>”Harmony of the spheres” </p><p>Figure: Pythagorean Model </p><p>Tycho Brahe (1546-1601) </p><p>•</p><p>Danish astronomer, alchemist </p><p>•</p><p>accurate astronomical observations, no telescope </p><p>•</p><p>importance of data collection </p><p>Johannes Kepler (1571-1631) </p><p>•••</p><p>Brahe’s assistant Used detailed data provided by Brahe Observations led to Laws of Planetary Motion </p><p>Johannes Kepler (1571-1631) </p><p>•••</p><p>Brahe’s assistant Used detailed data provided by Brahe Observations led to Laws of Planetary Motion </p><p>•</p><p>orbits are ellipses </p><p>•</p><p>equal area in equal time </p><p>T<sup style="top: -0.3012em;">2 </sup>∝ a<sup style="top: -0.3012em;">3 </sup></p><p>•</p><p>Kepler’s Model </p><p>•</p><p>Astrologer, Harmonices Mundi </p><p>Used empirical data to formulate laws </p><p>•</p><p>Figure: Kepler’s Model </p><p>Isaac Newton (1642-1727) </p><p>•</p><p>religious, yet desired a physical mechanism to explain Kepler’s laws </p><p>•</p><p>contributions to mathematics and science </p><p>•</p><p>Principia </p><p>•</p><p>almost entirety of an undergraduate physics degree </p><p>•</p><p>Law of Universal Gravitation </p><p>m<sub style="top: 0.1246em;">1</sub>m<sub style="top: 0.1246em;">2 </sub></p><p>~</p><p>F<sub style="top: 0.1245em;">12 </sub>= −G </p><p>ˆr<sub style="top: 0.1245em;">12</sub>. </p><p>2</p><p>|r<sub style="top: 0.1245em;">12</sub>| </p><p>Resonance </p><p>•</p><p>Transition from ratios/ integer spacing to more physical description, resonance plays a key role in celestial mechanics </p><p>Resonance </p><p>•</p><p>Transition from ratios/ integer spacing to more physical description, resonance plays a key role in celestial mechanics </p><p>•</p><p>Commensurability </p><p>The property of two orbiting objects, such as planets, satellites, or asteroids, whose orbital periods are in a rational proportion. </p><p>Resonance </p><p>•</p><p>Commensurability </p><p>The property of two orbiting objects, such as planets, satellites, or asteroids, whose orbital periods are in a rational proportion. </p><p>•</p><p>Resonance </p><p>Orbital resonances occur when the mean motions of two or more bodies are related by close to an integer ratio of their orbital periods </p><p>Examples </p><p>•</p><p>Pluto-Neptune 2:3 </p><p>•</p><p>Ganymede-Europa-Io 1:2:4 </p><p>Examples </p><p>Cassini division in Saturn’s rings 1:2 Resonance with Mimas </p><p>Kirkwood Gaps </p><p>Daniel Kirkwood (1886) </p><p>Kirkwood Gaps </p><p>•</p><p>Commensurability in the orbital periods cause an ejection by Jupiter </p><p>••</p><p>explanation provided by Kirkwood, using 100 asteroids now thought to exhibit chaotic change in eccentricity </p><p>My Goal </p><p>•</p><p>To create a simulation of the interactions of Jupiter, the Sun, and ’test’ asteroids </p><p>•</p><p>Integrate Newton’s equations of motion in MATLAB over a large time span (≈ 1MY ) </p><p>Requirements </p><p>1 an idea for what causes orbital resonance 2 an appropriate integrating scheme 3 initial conditions for all bodies being considered </p><p>Requirements </p><p>1 an idea for what causes orbital resonance 2 an appropriate integrating scheme 3 initial conditions for all bodies being considered </p><p>•</p><p>Start with the Kepler problem </p><p>Kepler Problem </p><p>•</p><p>The problem of two bodies interacting only by a central force is known as the Kepler Problem </p><p>•</p><p>Also known as the 2-body problem </p><p>Kepler Problem </p><p>m<sub style="top: 0.1363em;">1</sub>m<sub style="top: 0.1363em;">2 </sub></p><p>m<sub style="top: 0.1363em;">1</sub>r¨<sub style="top: 0.1363em;">1 </sub>= G </p><p>r<sub style="top: 0.2682em;">1</sub><sup style="top: -0.3132em;">2</sup><sub style="top: 0.2682em;">2 </sub>m<sub style="top: 0.1363em;">1</sub>m<sub style="top: 0.1363em;">2</sub>(r<sub style="top: 0.1363em;">1 </sub>− r<sub style="top: 0.1363em;">2</sub>) </p><p>= G </p><p>r<sub style="top: 0.2682em;">1</sub><sup style="top: -0.3132em;">3</sup><sub style="top: 0.2682em;">2 </sub>m<sub style="top: 0.1363em;">1</sub>m<sub style="top: 0.1363em;">2</sub>(r<sub style="top: 0.1363em;">2 </sub>− r<sub style="top: 0.1363em;">1</sub>) r<sub style="top: 0.2682em;">1</sub><sup style="top: -0.3132em;">3</sup><sub style="top: 0.2682em;">2 </sub>m<sub style="top: 0.1363em;">1</sub>m<sub style="top: 0.1363em;">2 </sub></p><p>m<sub style="top: 0.1363em;">2</sub>r¨<sub style="top: 0.1363em;">2 </sub>= G </p><p>r<sub style="top: 0.2682em;">1</sub><sup style="top: -0.3132em;">2</sup><sub style="top: 0.2682em;">2 </sub></p><p>= G </p><p>Center of Mass is stationary/ moves at constant velocity </p><p>Classic treatment </p><p>r¨ − r¨ = ¨r </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">1</li></ul><p></p><p>r</p><p>¨r + µ = 0 </p><p>r<sup style="top: -0.2627em;">3 </sup></p><p>G(m<sub style="top: 0.1364em;">1 </sub>+ m<sub style="top: 0.1364em;">2</sub>) = µ </p><p>Classic treatment </p><p>Considering motion of m<sub style="top: 0.1363em;">2 </sub>with respect to m<sub style="top: 0.1363em;">1 </sub>gives: r × ¨r = 0, which, integrating once, gives r × r˙ = h <br>This implies that </p><p>the motion in the two-body problem lies in a plane. </p><p>Treat this relative motion in polar coordinates (r,θ). </p><p>Polar form </p><p>Using, </p><p>r = rˆr </p><p>˙ˆ r˙ = rˆr + rθθ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>1 d </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">˙</li><li style="flex:1">˙</li><li style="flex:1">ˆ</li></ul><p>¨r = (¨r − rθ)ˆr + </p><p>(r θ) θ, </p><p>r dt </p><p>one finds the solution: </p><p>p</p><p>r(θ) = </p><p>,</p><p>1 + e cos(θ) </p><p>h<sup style="top: -0.2344em;">2 </sup></p><p>µ</p><p>where p = </p><p>.</p><p>Elliptical Orbit </p><p>ca</p><p>Figure: Axes of an ellipse, Eccentricity = </p><p>Kepler’s Laws </p><p>1 The motion of m<sub style="top: 0.1363em;">2 </sub>is an ellipse with m<sub style="top: 0.1363em;">1 </sub>at one focus </p><p>dA dt h</p><p>2</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">= constant </li></ul><p></p><p>Figure: Kepler’s 2nd Law </p><p>Kepler’s third law </p><p>dA dt h</p><p>2</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">From Kepler’s second law, we have </li><li style="flex:1">= . </li></ul><p></p><p>••</p><p>area of ellipse = A = πab </p><p>A</p><p>τ = </p><p>dA dt </p><p>4π<sup style="top: -0.2344em;">2</sup>a<sup style="top: -0.2344em;">3 </sup></p><p>µ</p><p>3 τ<sup style="top: -0.3299em;">2 </sup>= </p><p>, or τ<sup style="top: -0.3299em;">2 </sup>∝ a<sup style="top: -0.3299em;">3</sup>. </p><p>N-Body Problem </p><p>•</p><p>no analytical solutions for </p><p>N > 2 </p><p>•</p><p>computational methods → Euler’s method, Runge-Kutta </p>
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages54 Page
-
File Size-