Resonance in the Solar System

Resonance in the Solar System

<p>Resonance In the Solar <br>System </p><p>Steve Bache </p><p>UNC Wilmington <br>Dept. of Physics and Physical Oceanography <br>Advisor : Dr.&nbsp;Russ Herman </p><p>Spring 2012 </p><p>Goal </p><p>•••</p><p>numerically investigate the dynamics of the asteroid belt relate old ideas to new methods reproduce known results </p><p>History </p><p>The role of science: </p><p>••</p><p>make sense of the world perceive order out of apparent randomness </p><p>History </p><p>The role of science: </p><p>•••</p><p>make sense of the world perceive order out of apparent randomness the sky and heavenly bodies </p><p>Anaximander (611-547 BC) </p><p>•</p><p>Greek philosopher, scientist </p><p>•</p><p>stars, moon, sun 1:2:3 </p><p>Figure: Anaximander’s Model </p><p>Pythagoras (570-495 BC) </p><p>••</p><p>Mathematician, philosopher, started a religion all heavenly bodies at whole number ratios </p><p>•</p><p>”Harmony of the spheres” </p><p>Figure: Pythagorean Model </p><p>Tycho Brahe (1546-1601) </p><p>•</p><p>Danish astronomer, alchemist </p><p>•</p><p>accurate astronomical observations, no telescope </p><p>•</p><p>importance of data collection </p><p>Johannes Kepler (1571-1631) </p><p>•••</p><p>Brahe’s assistant Used detailed data provided by Brahe Observations led to Laws of Planetary Motion </p><p>Johannes Kepler (1571-1631) </p><p>•••</p><p>Brahe’s assistant Used detailed data provided by Brahe Observations led to Laws of Planetary Motion </p><p>•</p><p>orbits are ellipses </p><p>•</p><p>equal area in equal time </p><p>T<sup style="top: -0.3012em;">2 </sup>∝ a<sup style="top: -0.3012em;">3 </sup></p><p>•</p><p>Kepler’s Model </p><p>•</p><p>Astrologer, Harmonices Mundi </p><p>Used empirical data to formulate laws </p><p>•</p><p>Figure: Kepler’s Model </p><p>Isaac Newton (1642-1727) </p><p>•</p><p>religious, yet desired a physical mechanism to explain Kepler’s laws </p><p>•</p><p>contributions to mathematics and science </p><p>•</p><p>Principia </p><p>•</p><p>almost entirety of an undergraduate physics degree </p><p>•</p><p>Law of Universal Gravitation </p><p>m<sub style="top: 0.1246em;">1</sub>m<sub style="top: 0.1246em;">2 </sub></p><p>~</p><p>F<sub style="top: 0.1245em;">12 </sub>= −G </p><p>ˆr<sub style="top: 0.1245em;">12</sub>. </p><p>2</p><p>|r<sub style="top: 0.1245em;">12</sub>| </p><p>Resonance </p><p>•</p><p>Transition from ratios/ integer spacing to more physical description, resonance plays a key role in celestial mechanics </p><p>Resonance </p><p>•</p><p>Transition from ratios/ integer spacing to more physical description, resonance plays a key role in celestial mechanics </p><p>•</p><p>Commensurability </p><p>The property of two orbiting objects, such as planets, satellites, or asteroids, whose orbital periods are in a rational proportion. </p><p>Resonance </p><p>•</p><p>Commensurability </p><p>The property of two orbiting objects, such as planets, satellites, or asteroids, whose orbital periods are in a rational proportion. </p><p>•</p><p>Resonance </p><p>Orbital resonances occur when the mean motions of two or more bodies are related by close to an integer ratio of their orbital periods </p><p>Examples </p><p>•</p><p>Pluto-Neptune 2:3 </p><p>•</p><p>Ganymede-Europa-Io 1:2:4 </p><p>Examples </p><p>Cassini division in Saturn’s rings 1:2 Resonance with Mimas </p><p>Kirkwood Gaps </p><p>Daniel Kirkwood (1886) </p><p>Kirkwood Gaps </p><p>•</p><p>Commensurability in the orbital periods cause an ejection by Jupiter </p><p>••</p><p>explanation provided by Kirkwood, using 100 asteroids now thought to exhibit chaotic change in eccentricity </p><p>My Goal </p><p>•</p><p>To create a simulation of the interactions of Jupiter, the Sun, and ’test’ asteroids </p><p>•</p><p>Integrate Newton’s equations of motion in MATLAB over a large time span (≈ 1MY ) </p><p>Requirements </p><p>1 an idea for what causes orbital resonance 2 an appropriate integrating scheme 3 initial conditions for all bodies being considered </p><p>Requirements </p><p>1 an idea for what causes orbital resonance 2 an appropriate integrating scheme 3 initial conditions for all bodies being considered </p><p>•</p><p>Start with the Kepler problem </p><p>Kepler Problem </p><p>•</p><p>The problem of two bodies interacting only by a central force is known as the Kepler Problem </p><p>•</p><p>Also known as the 2-body problem </p><p>Kepler Problem </p><p>m<sub style="top: 0.1363em;">1</sub>m<sub style="top: 0.1363em;">2 </sub></p><p>m<sub style="top: 0.1363em;">1</sub>r¨<sub style="top: 0.1363em;">1 </sub>= G </p><p>r<sub style="top: 0.2682em;">1</sub><sup style="top: -0.3132em;">2</sup><sub style="top: 0.2682em;">2 </sub>m<sub style="top: 0.1363em;">1</sub>m<sub style="top: 0.1363em;">2</sub>(r<sub style="top: 0.1363em;">1 </sub>− r<sub style="top: 0.1363em;">2</sub>) </p><p>= G </p><p>r<sub style="top: 0.2682em;">1</sub><sup style="top: -0.3132em;">3</sup><sub style="top: 0.2682em;">2 </sub>m<sub style="top: 0.1363em;">1</sub>m<sub style="top: 0.1363em;">2</sub>(r<sub style="top: 0.1363em;">2 </sub>− r<sub style="top: 0.1363em;">1</sub>) r<sub style="top: 0.2682em;">1</sub><sup style="top: -0.3132em;">3</sup><sub style="top: 0.2682em;">2 </sub>m<sub style="top: 0.1363em;">1</sub>m<sub style="top: 0.1363em;">2 </sub></p><p>m<sub style="top: 0.1363em;">2</sub>r¨<sub style="top: 0.1363em;">2 </sub>= G </p><p>r<sub style="top: 0.2682em;">1</sub><sup style="top: -0.3132em;">2</sup><sub style="top: 0.2682em;">2 </sub></p><p>= G </p><p>Center of Mass is stationary/ moves at constant velocity </p><p>Classic treatment </p><p>r¨ − r¨ =&nbsp;¨r </p><p></p><ul style="display: flex;"><li style="flex:1">2</li><li style="flex:1">1</li></ul><p></p><p>r</p><p>¨r + µ = 0 </p><p>r<sup style="top: -0.2627em;">3 </sup></p><p>G(m<sub style="top: 0.1364em;">1 </sub>+ m<sub style="top: 0.1364em;">2</sub>) = µ </p><p>Classic treatment </p><p>Considering motion of m<sub style="top: 0.1363em;">2 </sub>with respect to m<sub style="top: 0.1363em;">1 </sub>gives: r × ¨r = 0, which, integrating once, gives r × r˙ = h <br>This implies that </p><p>the motion in the two-body problem lies in a plane. </p><p>Treat this relative motion in polar coordinates (r,θ). </p><p>Polar form </p><p>Using, </p><p>r = rˆr </p><p>˙ˆ r˙ = rˆr + rθθ </p><p></p><ul style="display: flex;"><li style="flex:1">ꢀ</li><li style="flex:1">ꢁ</li></ul><p></p><p>1 d </p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">˙</li><li style="flex:1">˙</li><li style="flex:1">ˆ</li></ul><p>¨r = (¨r − rθ)ˆr + </p><p>(r θ) θ, </p><p>r dt </p><p>one finds the solution: </p><p>p</p><p>r(θ) = </p><p>,</p><p>1 + e cos(θ) </p><p>h<sup style="top: -0.2344em;">2 </sup></p><p>µ</p><p>where p = </p><p>.</p><p>Elliptical Orbit </p><p>ca</p><p>Figure: Axes of an ellipse, Eccentricity = </p><p>Kepler’s Laws </p><p>1 The motion of m<sub style="top: 0.1363em;">2 </sub>is an ellipse with m<sub style="top: 0.1363em;">1 </sub>at one focus </p><p>dA dt h</p><p>2</p><p>2</p><p></p><ul style="display: flex;"><li style="flex:1">=</li><li style="flex:1">= constant </li></ul><p></p><p>Figure: Kepler’s 2nd Law </p><p>Kepler’s third law </p><p>dA dt h</p><p>2</p><p>•</p><p></p><ul style="display: flex;"><li style="flex:1">From Kepler’s second law, we have </li><li style="flex:1">= . </li></ul><p></p><p>••</p><p>area of ellipse = A = πab </p><p>A</p><p>τ = </p><p>dA dt </p><p>4π<sup style="top: -0.2344em;">2</sup>a<sup style="top: -0.2344em;">3 </sup></p><p>µ</p><p>3 τ<sup style="top: -0.3299em;">2 </sup>= </p><p>, or τ<sup style="top: -0.3299em;">2 </sup>∝ a<sup style="top: -0.3299em;">3</sup>. </p><p>N-Body Problem </p><p>•</p><p>no analytical solutions for </p><p>N &gt; 2 </p><p>•</p><p>computational methods → Euler’s method, Runge-Kutta </p>

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    54 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us