Quantum Integrable Systems from Conformal Blocks Quantum

Quantum Integrable Systems from Conformal Blocks Quantum

Quantum Integrable Systems from Conformal Blocks (arXiv: 1605.05105 with Joshua D. Qualls) Heng-Yu Chen National Taiwan University Strings 2016 @ Beijing Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks This talk attempts to discuss the following questions: I Are there more systematic or even more efficient ways to obtain conformal blocks in various dimensions and set up? I Can one extend the correspondence between the degenerate correlation functions and quantum integrable systems in d = 2 dim. CFTs to d > 2 dim. CFTs? I If so, how general such a correspondence is? Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks Let us begin with the four point function of scalar conformal primary operator φi (x) with scale dimension ∆i in d-dim. CFTs: 2 a 2 b x14 x14 F (u; v) < φ1(x1)φ2(x2)φ3(x3)φ4(x4) >= x 2 x 2 2 (∆1+∆2) 2 (∆3+∆4) 24 13 (x12) 2 (x34) 2 (1) ∆2−∆1 ∆3−∆4 where xij = xi − xj a = 2 , b = 2 and F (u; v) is a function of conformally invariant cross ratios: 2 2 2 2 x12x34 x14x23 u = 2 2 = zz¯; v = 2 2 = (1 − z)(1 − z¯): (2) x13x24 x13x24 Decomposing the four point function further into contributions from the individual exchanged primary operators O∆;l and its descendants: X < φ1(x1)φ2(x2)φ3(x3)φ4(x4) >= λ12O∆;l λ34O∆;l WO∆;l (xi ) (3) fO∆;l g WO∆;l (xi ) is \conformal partial wave" and λijO∆;l are \OPE coefficients.". Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks Conformal invariance also fixes W∆;l (xi ) into: 2 a 2 b x14 x14 GO∆;l (u; v) WO (xi ) = (4) ∆;l x 2 x 2 2 (∆1+∆2) 2 (∆3+∆4) 24 13 (x12) 2 (x34) 2 where GO∆;l (u; v) is the \Conformal Block" for O∆;l conformal family. The four point functions need to satisfy crossing symmetry equation when e. g. φ1(x1) $ φ3(x3): ∆1+∆2 X u 2 X λ λ G (u; v) = λ 0 λ 0 G 0 (v; u) 12O∆;l 34O∆;l O∆;l ∆2+∆3 14O∆;l 32O∆;l O∆;l v 2 0 fO∆;l g fO∆;l g (5) For unitary CFTs, if we know GO∆;l (u; v) exactly or at least some approximate forms, then assuming λ12O∆;l λ34O∆;l ≥ 0, and start numerically putting bounds on spectrum of f∆Og. [See Rychkov, Simmons-Duffin 16 for reviews] Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks Determining GO∆;l (u; v) for general four point functions remains difficult, one way is to consider \quadratic Casimir operator": [Dolan-Osborn 03, 11] 1 1 C^ = LAB L = (L + L ) (L + L )AB (6) 2 2 AB 2 1 2 AB 1 2 where Li;AB is Lorentz generator in d + 2-dimensional embedding space. For scalar primaries, we can define following differential operators: (a;b;c) 2 2 2 Dz = z (1 − z)@z − ((a + b + 1)z − cz)@z − abz; (a;b;c) 2 2 2 Dz¯ =z ¯ (1 − z¯)@z¯ − ((a + b + 1)¯z − cz¯)@z¯ − abz¯; (7) zz¯ ∆(")(a; b; c) = D(a;b;c) + D(a;b;c) + 2" ((1 − z)@ − (1 − z¯)@ ); (8) 2 z z¯ z − z¯ z z¯ d−2 where " = 2 enters as free parameter. Setting G (u; v) = F (") (z; z¯) which is symmetric z $ z¯, the action O∆;l λ+λ− of C^ 2 is (") (") (") ∆ ± l ∆ (a; b; 0) · F (z; z¯) = c2(λ+; λ−)F (z; z¯); λ± = : (9) 2 λ+λ− λ+λ− 2 Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks In addition, we also have \quartic Casimir operator" : 1 C^ = LAB L LCD L : (10) 4 2 BC DA The action of C^ 4 on primary scalars is also expressed as eigen-equation: ∆(")(a; b; 0) · F (") (z; z¯) = c (λ ; λ )F (") (z; z¯); (11) 4 λ+λ− 4 + − λ+λ− zz¯ 2 h i z − z¯ 2 h i ∆(")(a; b; c) = D(a;b;c) − D(a;b;c) D(a;b;c) − D(a;b;c) : 4 z − z¯ z z¯ zz¯ z z¯ (12) The quadratic and quartic Casimir operators are by definition commuting: ^ ^ (") (") [C2; C4] = 0 =) [∆2 (a; b; c); ∆4 (a; b; c)] = 0: (13) Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks Explicit closed expressions of scalar conformal blocks are only available in even-dim. CFTs in terms of following functions [Dolan-Osborn 11]: F ± (z; z¯) = g (z)g (¯z) ± g (¯z)g (z); (14) λ+λ− λ+ λ− λ+ λ− λ gλ(x) = z 2F1(a + λ, b + λ; 2λ; x): (15) 1 d = 2=" = 0 : F (0) (z; z¯) = F + (z; z¯); λ+λ− 2 λ+λ− 1 zz¯ d = 4=" = 1 : F (1) (z; z¯) = F − (z; z¯); λ+λ− l + 1 z − z¯ λ+λ− d = 6=" = 2 : F (2) (z; z¯) = 5 terms of F − (z; z¯): λ+λ− λ+λ− For general " however, relying on iterative approach/recurrence relation [Rychkov-Hogervorst 13, Costa-Hansen-Penedones-Trevisani 16] 1 X X ∆+n ^" GO∆;l (r; cos θ) = Bn;j r Cj (cos θ); Bn;j ≥ 0 (16) n=0 j where reiθ = pz and C^"(x) is normalized Gegenbauer polynomial. (1+ 1−z)2 j Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks QIS from Conformal Blocks Here we consider a quantum integrable system given by Hamiltonian: 2 ! @ @ (a − Kuu¯) (a − K~ uu¯) H^ BC = − + + 2a + 2 @u2 @u¯2 sinh2(u − u¯) sinh2(u +u ¯) b(b − K ) b0(b0 − K ) b(b − K ) b0(b0 − K ) + u − u + u¯ − u¯ : sinh2 u cosh2 u sinh2 u¯ cosh2 u¯ This is called \Hyperbolic Calogero-Sutherland spin chain of BC2, where Permutation : Kuu¯f (u; u¯) = f (¯u; u); K~ uu¯f (u; u¯) = f (−u¯; −u); Reflection : Kuf (u; u¯) = f (−u; u¯); Ku¯f (u; u¯) = f (u; −u¯): Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks The quantum integrability of a Quantum Integrable Sysytem is ensured by the existence of commuting conserved charges: d^I [^I ;^I ] = 0; k = [^I ; H^] = 0; k = 1;:::; N: (17) j k dt k They are most easily constructed from the commuting Dunkl operators: [Finkel et al 12] 0 " ~ # ^(a) @ b b Kuu¯ Kuu¯ Ju = − u + u Ku − a u+¯u + u−u¯ ; @u tanh 2 coth 2 tanh 2 tanh 2 0 " ~ # ^(a) @ b b Kuu¯ Kuu¯ Ju¯ = − u¯ + u¯ Ku¯ − a u+¯u − u−u¯ ; @u¯ tanh 2 coth 2 tanh 2 tanh 2 There are two independent commuting integrals of motion: 2 2 4 4 ^ ^ ^(a) ^(a) ^ ^(a) ^(a) I2 = HBC2 = − Ju − Ju¯ ; I4 = − Ju − Ju¯ : (18) Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks Now we establish the following exact mapping between QIS and CFT: [Isachenkov-Schomerus 16, HYC-Qualls 16] h i h i (") (") ^(BC2) ^(BC2) ∆2 (a; b; c); ∆4 (a; b; c) = 0 () I2 ; I4 = 0; G (z; z¯) () () (u; u¯): O∆;l λ+λ− The first step is to look for the appropriate commutator-preserving similarity transformation: 1 ∆(")(a; b; c) −! χ(") (z; z¯)∆(")(a; b; c) (19) 2;4 a;b;c 2;4 (") χa;b;c (z; z¯) to relate CFT Casimirs to the commuting quantum integrals of motion. The desired transformation is given by the following double-cover map: 1 z z(u) = − ! eu(z) = − p ; c:f: radial expansion sinh2 u (1 + 1 − z)2 a+b−c + 1 " (") [(1 − z(u))(1 − z¯(¯u))] 2 4 z(u) − z¯(¯u) χa;b;c (z(u); z¯(¯u)) = 1−c : [z(u)¯z(¯u)] 2 z(u)¯z(¯u) Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks Direct computation shows when acting on symmetric f (u; u¯) = f (¯u; u): 1 1 1 χ(") (z; z¯)∆(")(a; b; c) = − I = − H ; a;b;c 2 (") 4 2 4 BC2 χa;b;c (z; z¯) 1 1 a = "; b = (a − b) + ; b0 = (a + b − c) + : (20) 2 2 Notice when " = 0 or " = 1, i. e. d = 2 or d = 4, pair-wise interactions both vanish (P¨oschl-Teller). More generally we have the correspondence: (") (") (") (u; u¯) = χ (z(u); z¯(¯u))F (z(u); z¯(¯u)) λ+λ− a;b;c λ+λ− The eigenfunction is manifestly symmetric under u $ u¯, and has been constructed by Koornwinder and collaborators, and we obtain: (zz¯)a F (") (z; z¯) (−4)∆(16)a λ+λ− −(χ+a)(u+¯u) ^ (2) u u¯ " −χ−a a−b−1 a+b+1 = e × lim K ¯(e ; e ; q; q ; q ; q ; −q ; 1; −1): q!1− L;L ¯ ¯ ¯ 1 1 ¯ (L; L) are two row partitions, L − L = l, L = 2 [(∆ − l)], χ = 2 (∆ − l) − L. Heng-Yu Chen National Taiwan University Quantum Integrable Systems from Conformal Blocks (") ^ ^ The quartic Casimir ∆4 (a; b; c) is also expressed in terms of I2 and I4. First we can show that acting on (") (u; u¯): λ+λ− 2 2 h i 1 J(0) − J(0) = 4χ(0) (z; z¯) D(a;b;c) − D(a;b;c) : (21) u u¯ a;b;c z z¯ (0) χa;b;c (z; z¯) Next define following combinations of Dunkl and permutation operators: ^(+) ^(") ^(") ~ ^(−) ^(") ^(") Luu¯ = Ju + Ju¯ + 2Kuu¯; Luu¯ = Ju − Ju¯ + 2Kuu¯ We can show that: 2 2 1 L^(+)L^(−) (") (u; u¯) = t(")(z; z¯) J(0) − J(0) (") (u; u¯); uu¯ uu¯ λ+λ− u u¯ t(")(z; z¯) λ+λ− t(")(z(u); z¯(¯u)) = [sinh(u +u ¯) sinh(u − u¯)]" : (22) Using the invariance of (") (u; u¯) under reflection and permutation.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us