Inverse Problems in Geophysics Geos

Inverse Problems in Geophysics Geos

IINNVVEERRSSEE PPRROOBBLLEEMMSS IINN GGEEOOPPHHYYSSIICCSS GGEEOOSS 556677 A Set of Lecture Notes by Professors Randall M. Richardson and George Zandt Department of Geosciences University of Arizona Tucson, Arizona 85721 Revised and Updated Summer 2003 Geosciences 567: PREFACE (RMR/GZ) TABLE OF CONTENTS PREFACE ........................................................................................................................................v CHAPTER 1: INTRODUCTION ................................................................................................. 1 1.1 Inverse Theory: What It Is and What It Does ........................................................ 1 1.2 Useful Definitions ................................................................................................... 2 1.3 Possible Goals of an Inverse Analysis .................................................................... 3 1.4 Nomenclature .......................................................................................................... 4 1.5 Examples of Forward Problems .............................................................................. 7 1.5.1 Example 1: Fitting a Straight Line ........................................................... 7 1.5.2 Example 2: Fitting a Parabola .................................................................. 8 1.5.3 Example 3: Acoustic Tomography .......................................................... 9 1.5.4 Example 4: Seismic Tomography .......................................................... 10 1.5.5 Example 5: Convolution ....................................................................... 10 1.6 Final Comments .................................................................................................... 11 CHAPTER 2: REVIEW OF LINEAR ALGEBRA AND STATISTICS...................................... 12 2.1 Introduction ........................................................................................................... 12 2.2 Matrices and Linear Transformations..................................................................... 12 2.2.1 Review of Matrix Manipulations ............................................................ 12 2.2.2 Matrix Transformations ......................................................................... 15 2.2.3 Matrices and Vector Spaces ................................................................... 19 2.2 Probability and Statistics........................................................................................ 20 2.3.1 Introduction ............................................................................................ 20 2.3.2 Definitions, Part 1 ................................................................................... 20 2.3.3 Some Comments on Applications to Inverse Theory .............................. 23 2.3.4 Definitions, Part 2 .................................................................................. 24 CHAPTER 3: INVERSE METHODS BASED ON LENGTH ................................................... 28 3.1 Introduction ........................................................................................................... 28 3.2 Data Error and Model Parameter Vectors .............................................................. 28 3.3 Measures of Length ............................................................................................... 28 3.4 Minimizing the Misfit: Least Squares ................................................................... 30 3.4.1 Least Squares Problem for a Straight Line ............................................. 30 3.4.2 Derivation of the General Least Squares Solution .................................. 33 3.4.3 Two Examples of Least Squares Problems ............................................ 35 3.4.4 Four-Parameter Tomography Problem ................................................... 37 3.5 Determinancy of Least Squares Problems.............................................................. 38 3.5.1 Introduction ............................................................................................ 38 3.5.2 Even-Determined Problems: M = N ...................................................... 39 3.5.3 Overdetermined Problems: Typically, N > M ......................................... 39 3.5.4 Underdetermined Problems: Typically M > N ....................................... 39 3.6 Minimum Length Solution..................................................................................... 40 3.6.1 Background Information ........................................................................ 40 3.6.2 Lagrange Multipliers .............................................................................. 41 3.6.3 Application to the Purely Underdetermined Problem ............................. 44 i Geosciences 567: PREFACE (RMR/GZ) 3.6.4 Comparison of Least Squares and Minimum Length Solutions.............. 46 3.6.5 Example of Minimum Length Problem ................................................. 46 3.7 Weighted Measures of Length............................................................................... 47 3.7.1 Introduction ............................................................................................ 47 3.7.2 Weighted Least Squares.......................................................................... 47 3.7.3 Weighted Minimum Length ................................................................... 50 3.7.4 Weighted Damped Least Squares ........................................................... 52 3.8 A Priori Information and Constraints..................................................................... 53 3.8.1 Introduction ............................................................................................ 53 3.8.2 A First Approach to Including Constraints ............................................. 54 3.8.3 A Second Approach to Including Constraints ........................................ 56 3.8.4 Example From Seismic Receiver Functions ........................................... 59 3.9 Variance of the Model Parameters.......................................................................... 60 3.9.1 Introduction ............................................................................................60 3.9.2 Application to Least Squares .................................................................. 60 3.9.3 Application to the Minimum Length Problem ........................................ 61 3.9.4 Geometrical Interpretation of Variance ................................................... 61 CHAPTER 4: LINEARIZATION OF NONLINEAR PROBLEMS............................................ 65 4.1 Introduction ........................................................................................................... 65 4.2 Linearization of Nonlinear Problems ..................................................................... 65 4.3 General Procedure for Nonlinear Problems .......................................................... 68 4.4 Three Examples ..................................................................................................... 68 4.4.1 A Linear Example ................................................................................... 68 4.4.2 A Nonlinear Example ............................................................................. 70 4.4.3 Nonlinear Straight-Line Example ........................................................... 75 4.5 Creeping vs Jumping (Shaw and Orcutt, 1985) .................................................... 79 CHAPTER 5: THE EIGENVALUE PROBLEM ........................................................................ 82 5.1 Introduction ........................................................................................................... 82 5.2 The Eigenvalue Problem for Square (M × M) Matrix A ........................................ 82 5.2.1 Background ............................................................................................ 82 5.2.2 How Many Eigenvalues, Eigenvectors? .................................................. 83 5.2.3 The Eigenvalue Problem in Matrix Notation .......................................... 84 5.2.4 Summarizing the Eigenvalue Problem for A .......................................... 87 5.3 Geometrical Interpretation of the Eigenvalue Problem for Symmetric A ............... 87 5.3.1 Introduction ............................................................................................ 87 5.3.2 Geometrical Interpretation ...................................................................... 88 5.3.3 Coordinate System Rotation ................................................................... 92 5.3.4 Summarizing Points ............................................................................... 93 5.4 Decomposition Theorem for Square A .................................................................. 94 5.4.1 The Eigenvalue Problem for AT ............................................................. 94 5.4.2 Eigenvectors for AT ................................................................................ 94 5.4.3 Decomposition Theorem for Square Matrices ........................................ 95 5.4.4 Finding the Inverse A–1 for the M × M Matrix A ................................ 101 5.4.5 What Happens When There Are Zero Eigenvalues? ............................ 102 5.4.6 Some Notes on the Properties of SP and RP ........................................ 105 5.5 Eigenvector Structure of mLS .............................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    247 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us