Mass Spectrometry: Fragmentation

Mass Spectrometry: Fragmentation

Mass Spectrometry: Fragmentation Ethers & Sulfides ! !!!! Ethers • M+ usually stronger than corresponding alcohol; may be weak/absent • α-cleavage of an alkyl radical • Inductive cleavage • Rearrangement with loss of CHR=CHR’ Aryl Ethers • M+ strong • C-O cleavage β to aromatic ring with subsequent loss of CO • Cleavage adjacent to aryl ring also possible Sulfides • M+ usually stronger than corresponding ether • cleavage pattern similar to ethers Mass Spectrometry: Fragmentation Ethers fragmentation patterns α-cleavage H R' R CH2 O R' R + O H inductive cleavage R CH2 O R' R CH2 + O R' rearrangement H H H CH CHR H + H2C=CHR H O 2 H O Mass Spectrometry: Fragmentation O Ethers MW = 88 ethyl propyl ether H H H H O O H m/z = 31 59 M-29 CH2CH2CH3 CH CH 3 2 m/z = 43 m/z = 29 H M (88) H O 73 M-15 Mass Spectrometry: Fragmentation O Ethers MW = 130 di-sec-butyl ether H H H3C O m/z = 45 m/z = 57 H H3C O 101 H M-29 H H CH3CH2 O CH CH O m/z = 59 3 2 115 M-15 M (130) Mass Spectrometry: Fragmentation O O Ethers 2-ethyl-2-methyl-1,3-dioxolane MW = 116 O O 87 M-29 O O 101 M-15 M+ absent Mass Spectrometry: Fragmentation OCH3 Aryl Ethers anisole MW = 108 M (108) H loss of C O H m/z = 78 O m/z = 65 93 M-15 Mass Spectrometry: Fragmentation Aryl Ethers fragmentation of aryl ethers O O CH3 - CH3 - CO m/z = 93 m/z = 65 O O - CH2O - H CH2 ≡ CH2 H H H H m/z = 78 m/z = 77 Mass Spectrometry: Fragmentation S Sulfides ethyl isopropyl sulfide MW = 104 M (104) mz = 61 89 M-15 75 M-29 Mass Spectrometry: Fragmentation Amines ! !!!! Aliphatic Amines • M+ will be an odd number for monoamine; may be weak/absent • M-1 common • α-cleavage of an alkyl radical is predominate fragmentation mode largest group lost preferentially • McLafferty rearrangement / loss of NH3 (M-17) are not common Cyclic Amines • M+ usually strong • M-1 common • fragmentation complex, varies with ring size Aromatic Amines • M+ usually strong • M-1 common • loss of HCN is common in anilines Mass Spectrometry: Fragmentation Amines fragmentation patterns α-cleavage R' R' R + H N R N R" R" H loss of H radical R' R' R N R" R N + H R" H M-1 ring formation R NH NH2 R + 2 n = 1, m/z = 72 n = 2, m/z = 86 n n Mass Spectrometry: Fragmentation NH2 Amines MW = 45 ethylamine H H N H H mz = 30 H N M (45) H H 44 M-1 base peak Mass Spectrometry: Fragmentation N Amines H MW = 73 diethylamine N H H 58 H N M-15 H H α cleavage m/z = 30 M (73) 72 M-1 Mass Spectrometry: Fragmentation N Amines MW = 101 triethylamine 86 M-15 α cleavage H H N H H m/z = 30 M (101) 100 M-1 Mass Spectrometry: Fragmentation N H Amines MW = 87 N-ethylpropylamine 58 M-29 m/z = 30 α cleavage 72 M (87) M-15 Mass Spectrometry: Fragmentation Cyclic Amines N H piperidine MW = 85 N 84 H M-1 84 M-28 M (85) and N H Mass Spectrometry: Fragmentation NH2 Aromatic Amines MW = 93 aniline H H NH -HCN - H M-1 m/z = 66 m/z = 65 M (93) m/z = 65 92 M-1 Mass Spectrometry: Fragmentation Carbonyl Compounds ! !!! Common Fragmentation Modes α-cleavage (two possibilities) G = H, R', OH, OR', NR'2 O R C O + G R G O R + G C O R G β-cleavage O O R R + G G McLafferty rearrangement H R H R O O + G G Mass Spectrometry: Fragmentation Carbonyl Compounds ! !!! Aldehydes • M+ usually observed; may be weak in aliphatic aldehydes • M-1 common (α-cleavage) • α-cleavage is predominant fragmentation mode; often diagnostic (m/z = 29) especially in aromatic aldehydes (M-1; M-29) • β-cleavage results in M-41 fragment; greater if α-substitution • McLafferty rearrangement in appropriately substituted systems (m/z = 44 or higher) Ketones • M+ generally strong • α-cleavage is the primary mode of fragmentation • β-cleavage less common, but sometimes observed • McLafferty rearrangement possible on both sides of carbonyl if chains sufficiently long • Cyclic ketones show complex fragmentation patterns • Aromatic ketones primarily lose R• upon α-cleavage, followed by loss of CO Mass Spectrometry: Fragmentation O Aliphatic Aldehydes H pentanal MW = 86 H O McLafferty H mz = 44 α cleavage β cleavage H C O mz = 29 CH CH CH 3 2 2 α cleavage mz = 43 C4H9 C O 85 M-1 M (86) Mass Spectrometry: Fragmentation O H Aldehydes 2-ethylbutanal MW = 100 H O H m/z = 72 H C O mz = 29 M (100) Mass Spectrometry: Fragmentation O H Aromatic Aldehydes MW = 106 benzaldehyde M (106) 105 M-1 mz = 77 Mass Spectrometry: Fragmentation O Aliphatic Ketones 2-hexanone MW = 100 43 O C CH α cleavage 3 M-57 H O McLafferty mz = 58 α cleavage O C 85 M-15 M (100) Mass Spectrometry: Fragmentation O Ketones acetophenone MW = 120 C O 105 M-15 mz = 77 M (120) Mass Spectrometry: Fragmentation O Cyclic Ketones cyclohexanone MW = 98 M (98) mz = 55 O mz = 42 O mz = 70 Mass Spectrometry: Fragmentation Cyclic Ketones cyclohexanone O O O O H H H + m/z = 55 O O H + m/z = 70 - CO m/z = 42 Mass Spectrometry: Fragmentation Carboxylic Acids, Esters & Amides ! !! Carboxylic Acids • M+ weak in aliphatic acids; stronger in aromatic acids • Most important α-cleavage involves loss of OH radical (M-17) • α-cleavage with loss of alkyl radical less common; somewhat diagnostic (m/z = 45) • McLafferty rearrangement in appropriately substituted systems (m/z = 60 or higher) • Dehydration can occur in o-alkyl benzoic acids (M-18) Esters • M+ weak in most cases; aromatic esters give a stronger parent ion • Loss of alkoxy radical more important of the α-cleavage reactions • Loss of an alkyl radical by α-cleavage occurs mostly in methyl esters (m/z = 59) • McLafferty rearrangements are possible on both alkyl and alkoxy sides • Benzyloxy esters and o-alkyl benzoates fragment to lose ketene and alcohol, respectively Amides • M+ usually observed; Follow the Nitrogen Rule (odd # of N, odd MW) • α-cleavage affords a specific ion for primary amides (m/z = 44? • McLafferty rearrangement observed when γ-hydrogens are present Mass Spectrometry: Fragmentation O Aliphpatic Carboxylic Acids OH MW = 88 butyric acid H O H O mz = 60 O C 71 M-17 O C OH mz = 45 M (88) weak M+ Mass Spectrometry: Fragmentation O OH Carboxylic Acids H3C CH3 2,4-dimethylbenzoic acid MW = 150 M (150) O - H O O H 2 C O H strong M+ 132 M-18 133 M-17 mz = 77 Mass Spectrometry: Fragmentation O Esters OCH3 methyl butyrate MW = 102 H loss of: O O McLafferty CH3CH2CH2 OCH3 OCH inductive 3 cleavage 43 74 M-59 M-28 CH3 15 α cleavage 71 M-87 M-31 59 87 M-43 M-15 M (102) Mass Spectrometry: Fragmentation O Esters O butyl butyrate MW = 144 71 M (144) M-73 absent H O H Pr O 89 H O McLafferty + 1 Pr O 88 McLafferty 101 M-43 H H O O Mass Spectrometry: Fragmentation + Bu Bu O O Esters m/z = 116 fragmentation patterns (not observed) McLafferty rearrangement H H O O + O Pr O m/z = 88 McLafferty + 1 H H H H O O O H O + H Pr O Pr O Pr O Pr O m/z = 89 Mass Spectrometry: Fragmentation O Esters O MW = 150 benzyl acetate OH α cleavage tropylium ion 108 M-42 91 M-59 O 43 M-108 M (150) Mass Spectrometry: Fragmentation Esters fragmentation patterns Benzyl ester rearrangement O O O H + O C CH2 H can fragment further Loss of alcohol O O R C + O O H R H X = CH2, O X X Mass Spectrometry: Fragmentation O Amides NH2 butyramide MW = 87 H O O C NH2 α cleavage McLafferty mz = 44 NH2 59 M-28 M (87) Mass Spectrometry: Fragmentation O Amides N H N-ethylpropionamide MW = 101 M (101) CH3CH2 mz = 29 H 57 72 N CH2 M-44 M-29 H mz = 30 O N H 86 M-15 Mass Spectrometry: Fragmentation O CH N 3 Aryl Amides H N-methylbenzamimde MW = 135 105 M-29 mz = 77 M (135) M-1 Mass Spectrometry: Fragmentation Nitriles Nitriles • M+ may be weak/absent; strong M+ in aromatic nitriles; follow nitrogen rule • Fragment readily to give M-1 • Loss of HC≡N fequently obsterved (M-27); aromatic nitriles also show loss of •CN (M-26) • McLafferty rearrangement in nitriles of appropriate length (m/z = 41) Mass Spectrometry: Fragmentation Nitriles fragmentation patterns Loss of α-hydrogen H H H + C C N R C N R M-1 Loss of HCN H R + HC N R C N M-27 McLafferty rearrangement R H N R + H2C C NH C m/z = 41 Mass Spectrometry: Fragmentation Nitriles C N hexanenitrile MW = 97 McLafferty H2C C NH mz = 41 H C C N C4H9 96 70 M-1 M-27 M (97) Mass Spectrometry: Fragmentation Nitro Compounds & Halides Nitro Compounds • M+ almost never observed unless aromatic; follow nitrogen rule + + • Principle degradation is loss of NO (m/z = 30) and loss of NO2 (m/z = 46) • Aromatic nitro compounds show additional fragmentation patterns Halides • M+ often weak; stronger in aromatic halides • chloro and bromo compounds show strong M+2 peaks Cl – M : M+2 3 : 1 Br – M : M+2 1 : 1 • principle fragmentation is loss of halogen • Loss of HX also common • α-cleavage sometimes observed Mass Spectrometry: Fragmentation Nitro Compounds fragmentation patterns O O R N R + N O O m/z = 46 O + R N R O N O R O N O O m/z = 30 NO2 O + NO + C O m/z = 93 m/z = 65 NO2 + NO2 C4H3 + H H m/z = 77 m/z = 51 Mass Spectrometry: Fragmentation Nitro Compounds NO2 1-nitropropane MW = 89 M (89) CH3CH2CH2 absent 43 M-46 N O O N mz = 30 O mz = 46 Mass Spectrometry: Fragmentation NO2 Nitro Compounds nitrobenzene MW = 123 77 M-NO2 M (123) mz = 51 O N O 93 mz = 65 M-NO mz = 30 Mass Spectrometry: Fragmentation Organic Halides fragmentation patterns Loss of Halide R X R + X I > Br >> Cl > F Loss of HX H H R R C C X C CH2 + HX H H H HF > HCl > HBr > HI α-cleavage H H R C X R + C X H H Loss of δ Chain R X X R + Mass Spectrometry: Fragmentation Alkyl Halides Cl 1-chloropropane MW = 78 CH3CH2CH2 43 M-Cl α cleavage 42 H M-HCl C Cl H 80 mz = 49, 51 M (78) M+2 Mass Spectrometry: Fragmentation Cl Alkyl Halides MW = 78 2-chloropropane 43 M-Cl H C Cl CH3 m/z = 63, 65 M (78) 80 M+2 Mass Spectrometry: Fragmentation Cl Alkyl Halides 2-chloroheptane MW = 134 rearrngement 56 M-78 98 M - HCl Cl m/z = 105, 107 M (134) M+2 (136) H H Cl Cl Mass Spectrometry: Fragmentation Br Alkyl Halides 2-bromopropane MW = 123 CH3CHCH3 43 M-Br M (122) 124 M+2 Mass Spectrometry: Fragmentation Alkyl Halides Br MW = 165 1-bromohexane Br 85 M-Br mz = 135, 137 rearrngement mz = 57 166 M (164) M+2 Mass Spectrometry: Fragmentation Br Alkyl Halides bromobenzene MW = 157 mz = 77 M (156) 158 M+2 Mass Spectrometry: Fragmentation What Can the MS Tell You? ! Evaluation of UnknownCompounds by Mass Spectr 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    57 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us