FUNCTION-BASED DESIGN TOOLS FOR ANALYZING THE BEHAVIOR AND SENSITIVITY OF COMPLEX SYSTEMS DURING CONCEPTUAL DESIGN A Dissertation by RYAN SCOTT HUTCHESON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2009 Major Subject: Mechanical Engineering FUNCTION-BASED DESIGN TOOLS FOR ANALYZING THE BEHAVIOR AND SENSITIVITY OF COMPLEX SYSTEMS DURING CONCEPTUAL DESIGN A Dissertation by RYAN SCOTT HUTCHESON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Daniel McAdams Committee Members, Julie Linsey Make McDermott Hamid Toliyat Head of Department, Dennis O’Neal May 2009 Major Subject: Mechanical Engineering iii ABSTRACT Function-based Design Tools for Analyzing the Behavior and Sensitivity of Complex Systems During Conceptual Design. (May 2009) Ryan Scott Hutcheson, B.S., Missouri University of Science and Technology; M.S., Missouri University of Science and Technology; Chair of Advisory Committee: Dr. Daniel McAdams Complex engineering systems involve large numbers of functional elements. Each functional element can exhibit complex behavior itself. Ensuring the ability of such systems to meet the customer’s needs and requirements requires modeling the behavior of these systems. Behavioral modeling allows a quantitative assessment of the ability of a system to meet specific requirements. However, modeling the behavior of complex systems is difficult due to the complexity of the elements involved and more importantly the complexity of these elements’ interactions. In prior work, formal functional modeling techniques have been applied as a means of performing a qualitative decomposition of systems to ensure that needs and requirements are addressed by the functional elements of the system. Extending this functional decomposition to a quantitative representation of the behavior of a system represents a significant opportunity to improve the design process of complex systems. To this end, a functionality-based behavioral modeling framework is proposed along with a sensitivity analysis method to support the design process of complex systems. These design tools have been implemented in a computational framework and have been used to model the behavior of various engineering systems to demonstrate their maturity, application and effectiveness. The most significant result is a multi-fidelity model of a hybrid internal combustion-electric racecar powertrain that enabled a comprehensive quantitative study of longitudinal vehicle performance during various stages in the iv design process. This model was developed using the functionality-based framework and allowed a thorough exploration of the design space at various levels of fidelity. The functionality-based sensitivity analysis implemented along with the behavioral modeling approach provides measures similar to a variance-based approach with a computation burden of a local approach. The use of a functional decomposition in both the behavioral modeling and sensitivity analysis significantly contributes to the flexibility of the models and their application in current and future design efforts. This contribution was demonstrated in the application of the model to the 2009 Texas A&M Formula Hybrid powertrain design. v TABLE OF CONTENTS Page ABSTRACT.......................................................................................................... iii TABLE OF CONTENTS....................................................................................... v LIST OF FIGURES............................................................................................... vii LIST OF TABLES................................................................................................. xi 1. INTRODUCTION: THE DESIGN OF COMPLEX SYSTEMS ...................... 1 1.1 Objectives of the Research................................................................. 3 1.2 Foundations of the Solution – Functional Modeling........................... 3 1.3 Procedure .......................................................................................... 6 1.4 Terminology...................................................................................... 6 1.5 Comprehensive Example ................................................................... 7 2. PRODUCT DESIGN ....................................................................................... 9 2.1 Early Engineering Design.................................................................. 10 2.2 Reconciling the Various Methods...................................................... 14 2.3 Product Planning ............................................................................... 16 2.4 Conceptual Design ............................................................................ 20 2.5 Functional Organization of Early Design for Complex Systems......... 25 2.6 Tools to Assist Design of Complex Systems...................................... 33 3. FUNCTIONALITY ASSISTED BEHAVIORAL MODELING....................... 34 3.1 The Design of Systems...................................................................... 35 3.2 Function-Based Behavioral Modeling................................................ 40 3.3 Automotive Model Example.............................................................. 49 3.4 Conclusions....................................................................................... 66 4. SENSITIVITY ANALYSIS IN EARLY DESIGN........................................... 68 4.1 Sensitivity Analyses in Engineering Design....................................... 70 4.2 Hybrid Variation-Based Local Sensitivity Measures.......................... 73 4.3 Example ............................................................................................ 77 4.4 Conclusions....................................................................................... 85 vi Page 5. COMPUTATIONAL IMPLEMENTATION OF THE DESIGN TOOLS......... 87 5.1 Automated Model Assembly and Solution in Practice........................ 87 5.2 Model Assembly and Solution Framework ........................................ 88 5.3 Development of a Modeling Framework............................................ 92 5.4 Framework Example ......................................................................... 117 5.5 Conclusions....................................................................................... 122 6. THE EARLY DESIGN OF A FORMULA HYBRID POWERTRAIN............. 124 6.1 Example Introduction ........................................................................ 124 6.2 Pre-design Activities ......................................................................... 128 6.3 Design Process .................................................................................. 134 6.4 Design Synthesis ............................................................................... 148 7. CONCLUSION................................................................................................ 160 REFERENCES...................................................................................................... 163 APPENDIX 1 ........................................................................................................ 170 APPENDIX 2 ........................................................................................................ 173 APPENDIX 3 ........................................................................................................ 182 APPENDIX 4 ........................................................................................................ 183 APPENDIX 5 ........................................................................................................ 185 VITA..................................................................................................................... 188 vii LIST OF FIGURES FIGURE Page 2.1 Functional Model of the Design of a System ........................................... 29 2.2 Planning Functional Model...................................................................... 29 2.3 Conceptual Design Functional Model...................................................... 30 2.4 Modified Design Decomposition Functional Model................................. 32 2.5 Modified Design Synthesis Functional Model ......................................... 33 3.1 Hybrid Powertrain Black-box Model....................................................... 42 3.2 Hybrid Powertrain Functional Model ...................................................... 43 3.3 Hybrid Powertrain Type I Flow Routing.................................................. 45 3.4 Hybrid Powertrain Functional Model (Version 2).................................... 51 3.5 Type 2 Model Flow Routing.................................................................... 52 3.6 Convert Chemical Energy to Rotational Energy Type I Model Element... 54 3.7 Provision Electrical Energy Type I Model Element ................................. 55 3.8 Convert Electrical Energy to Rotational Energy Type I Model Element... 55 3.9 Distribute Rotational Energy Type I Model Element ............................... 55 3.10 Transfer Mechanical Energy Type I Model Element................................ 56 3.11 Distribute Mechanical Energy Type I Model Element ............................. 56 3.12 Convert Chemical Energy to Rotational Energy
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages202 Page
-
File Size-