Fraunhofer Diffraction

Fraunhofer Diffraction

Sinusoidal amplitude grating … +1st order Λ θ 0th order (or DC term) incident –θ plane diffraction angle wave -1st order spatial frequency … diffraction efficiencies MIT 2.71/2.710 04/06/09 wk9-a- 5 Example: binary phase grating 1 0.75 s | [a.u.] q=+5 t 0.5 |g 0.25 q=+4 0 −30 −20 −10 0 10 20 30 x [!] q=+3 pi Λ pi/2 q=+2 ) [rad] t 0 −pi/2 q=+1 phase(g Duty cycle = 0.5 −pi −30 −20 −10 0 10 20 30 x [!] q=0 incident q= –1 plane wave q= –2 q= –3 q= –4 q= –5 glass refractive index n MIT 2.71/2.710 04/06/09 wk9-a- 9 Grating dispersion … Λ air glass white Grating: Prism: … blue light is diffracted at blue light is refracted at smaller angle than red: larger angle than red: anomalous dispersion normal dispersion MIT 2.71/2.710 04/06/09 wk9-a-10 Today • Fraunhofer diffraction • Fourier transforms: maths • Fraunhofer patterns of typical apertures • Fresnel propagation: Fourier systems description – impulse response and transfer function – example: Talbot effect Next week • Fourier transforming properties of lenses • Spatial frequencies and their interpretation • Spatial filtering MIT 2.71/2.710 04/08/09 wk9-b- 1 Fraunhofer diffraction Fresnel (free space) propagation may be expressed as a convolution integral MIT 2.71/2.710 04/08/09 wk9-b- 2 Example: rectangular aperture x y z sinc pattern free space propagation by l→∞ x0 MIT 2.71/2.710 input field far field 04/08/09 wk9-b- 3 Example: circular aperture x y z Airy pattern free space 2r0 propagation by l→∞ MIT 2.71/2.710 input field far field 04/08/09 wk9-b- 4 How far along z does the Fraunhofer pattern appear? Fresnel (free space) propagation may be expressed as a convolution integral cos(πα2) α 2 2 2 For example, if (x +y )max=(4λ) , then z>>16λ to enter the Fraunhofer regime; 2 2 2 6 if (x +y )max=(1000λ) , then z>>10 λ; in practice, the Fraunhofer intensity pattern is recognizable at smaller z than long short these predictions (but the correct Fraunhofer phase takes longer to form) propagation distance z MIT 2.71/2.710 04/08/09 wk9-b- 5 Fourier transforms • One dimensional – Fourier transform – Fourier integral • Two dimensional – Fourier transform – Fourier integral (1D so we can draw it easily ... ) g(x) [real] Re[e-i2πux] Re[G(u)]= x dx MIT 2.71/2.710 04/08/09 wk9-b- 6 Frequency representation -i2πux g(x)=cos[2πu0x] Re[e ] x Re[G(u)]= dx =0, if u0≠u x Re[G(u)]= dx =∞, if u0=u G(u) δ(u+u0) δ(u−u0) G(u)=½ δ(u+u0)+½ δ(u−u0) ½ ½ The negative frequency is physically meaningless, u but necessary for mathematical rigor; it is the price to pay for the convenience of using −u0 +u0 complex exponentials in the phasor representation MIT 2.71/2.710 04/08/09 wk9-b- 7 Commonly used functions in wave Optics Text removed due to copyright restrictions. Please see p. 12 in Goodman, Joseph W. Introduction to Fourier Optics. Englewood, CO: Roberts & Co., 2004. ISBN: 9780974707723. Images from Wikimedia Commons, http://commons.wikimedia.org MIT 2.71/2.710 04/08/09 wk9-b- 8 Goodman, Introduction to Fourier Optics (3rd ed.) pp. 12-14 Fourier transform pairs Functions with radial symmetry Table removed due to copyright restrictions. Please see Table 2.1 in Goodman, Joseph W. Introduction to Fourier Optics. Englewood, CO: Roberts & Co., 2004. ISBN: 9780974707723. jinc(ρ)≡ Images from Wikimedia Commons, http://commons.wikimedia.org MIT 2.71/2.710 04/08/09 wk9-b- 9 Goodman, Introduction to Fourier Optics (3rd ed.) p. 14 Fourier transform properties Text removed due to copyright restrictions. Please see pp. 8-9 in Goodman, Joseph W. Introduction to Fourier Optics. Englewood, CO: Roberts & Co., 2004. ISBN: 9780974707723. A general discussion of the properties of Fourier transforms may also be found here http://en.wikipedia.org/wiki/Fourier_transform#Properties_of_the_Fourier_transform. IMPORTANT! A note on notation: Goodman uses (fX, fY) to denote spatial frequencies along the (x,y) dimensions, respectively. In these notes, we will sometimes use (u,v) instead. MIT 2.71/2.710 04/08/09 wk9-b-10 Goodman, Introduction to Fourier Optics (3rd ed.) pp. 8-9 The spatial frequency domain: vertical grating y v x u y v x u Frequency Space (Fourier) domain domain MIT 2.71/2.710 04/08/09 wk9-b-11 The spatial frequency domain: tilted grating y v x u y v x u Frequency Space (Fourier) domain domain MIT 2.71/2.710 04/08/09 wk9-b-12 Superposition: two gratings + + Frequency Space (Fourier) domain domain MIT 2.71/2.710 04/08/09 wk9-b-13 Superposition: multiple gratings discrete (Fourier series) continuous (Fourier integral) Frequency Space (Fourier) domain domain MIT 2.71/2.710 04/08/09 wk9-b-14 Spatial frequency representation of arbitrary scenes 0 MIT 2.71/2.710 04/08/09 wk9-b-15 The scaling (or similarity) theorem Frequency Space (Fourier) domain domain MIT 2.71/2.710 04/08/09 wk9-b-16 The shift theorem Frequency Space (Fourier) domain domain MIT 2.71/2.710 04/08/09 wk9-b-17 The convolution theorem multiplication convolution MIT 2.71/2.710 04/08/09 wk9-b-18 MIT OpenCourseWare http://ocw.mit.edu 2.71 / 2.710 Optics Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    22 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us