Perovskite Solar Cells via Vapour Deposition Processes by Qingshan Ma A THESIS IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy School of Photovoltaic and Renewable Energy Engineering Faculty of Engineering The University of New South Wales November 2017 Acknowledgment I would love to thank all the people who provided help and supports during my PhD adventure. I would like to acknowledge the School of Photovoltaic and renewable energy engineering for supporting my PhD studies. Without them, this thesis wouldn’t be possible. First and foremost, I would like to express my sincere thanks to my supervisors Dr. Shujuan Huang, Dr. Anita Ho-Baillie and Prof. Martin Green for their guidance and supports in the past 3.5 years. I would like to thank all my perovskite group members, Dr. Sanghun Woo, Dr. Rui Sheng, Arman Mahboubi Soufiani, Dr. Jae Yun, Dr. Yajie Jiang, Sheng Chen, Jincheol Kim, Cho Fai Jonathan Lau, Xiaofan Deng, Adrian Shi, Dr. Meng Zhang, Jianghui Zheng, Jueming Bing, Yongyoon Cho, Da Seul Lee and Benjamin Wilkinson, for their help in my research and the great time we had together. I also would like to thank Dr. Xiaoming Wen for the photoluminescence characterization and Dr. Trevor Young for the proof reading of my thesis. I thank my friend Zewen Zhang, who inspired me and always has been there with me during my time in Australia. I thank my friends Aobo Pu and Dr. Wenkai Cao for making my PhD life so enjoyable. Particularly, I will always remember the countless lunch that I have had with Aobo in the last a few years, which made me not feel so alone. I would like to say thanks to all my friends in Australia and China! Special thanks to Zelin Li, who encouraged me to go abroad for research studies. Last but not least, I would love to thank my family! This acknowledgement ends with my proposal to Xinwei Li: Marry me! 1 Abstract Perovskite thin film solar cells have experienced astonishing efficiency improvements from 2.2% to above 22% in recent years. The high efficiency, ease and low embodied energy fabrication and the bandgap tunability make it promising as the next generation of low cost photovoltaic devices and in the application of tandem solar cells with even higher efficiencies. This thesis focuses on developing scalable fabrication of perovskite solar cells by vapour based processes towards the commercialization and investigating inorganic lead halide perovskites with suitable bandgaps and improved thermal stability for tandem applications. Vapour based processes which are able to deposit uniform thin films on large substrates for scalable production are developed to fabricate organic lead halide perovskite. Firstly, dual source thermal co-evaporation and sequential thermal evaporation methods are introduced to evaporate methylammonium iodide (MAI) and lead chloride onto the substrate in a vacuum chamber to form the organic lead halide perovskite. Later it is found that the evaporation of the small organic molecular MAI is not so friendly to the vacuum system. Thus a novel vapour-assisted evaporation method is proposed to fabricate MAPbIXCl3-x perovskite in which the deposition of MAI in the vacuum evaporation system is eliminated and carried out in a glass container in the nitrogen glovebox instead. Inorganic metal halide perovskites have the advantage of better thermal stability compared to the organic counterparts and has a higher bandgap suitable for tandem application, for example, when integrated onto the silicon photovoltaic devices 2 particularly when a vapour fabrication method is employed for the perovskite deposition. This thesis explores the fabrication of inorganic CsPbIBr2 and CsPbI2Br perovskites via the dual source thermal co-evaporation method. The CsPbIBr2 and CsPbI2Br perovskite with a bandgap of 2.05 eV and 1.9 eV respectively are suitable to work as a top cell in a 3-junction tandem cell on a 1.1 eV silicon bottom cell. The thermal stability of CsPbIBr2 and air stability of CsPbI2Br perovskite thin film are investigated as well in this thesis. The air stability of CsPbI2Br perovskite can be improved by the stoichiometry control, benefiting from the reduced crystallite size. 3 Table of Contents Acknowledgment ........................................................................................................................... 1 Abstract ......................................................................................................................................... 2 Table of Contents .......................................................................................................................... 4 List of Publications ......................................................................................................................... 7 Abbreviations and Symbols ........................................................................................................... 9 Chapter 1 Introduction ................................................................................................................ 12 1.1 Background ........................................................................................................................ 12 1.1.1 Fossil Fuel Crisis and Its Problems .............................................................................. 12 1.1.2 Solar Energy and Photovoltaics (PV) .......................................................................... 12 1.1.3 Thin Film Solar Cells .................................................................................................... 14 1.1.4 Thin Film Perovskite Solar Cells .................................................................................. 17 1.1.4.1 Advantages of Perovskite Solar Cells ................................................................... 19 1.1.4.2 Use of Perovskites for Tandem Solar Cells .......................................................... 19 1.1.4.3 Challenges for Perovskite Solar Cells ................................................................... 20 1.2 Thesis Objective ................................................................................................................. 20 1.3 Thesis Outline .................................................................................................................... 22 References: .............................................................................................................................. 24 Chapter 2 Literature Review ........................................................................................................ 26 2.1 Perovskite Solar Cells: Overview ....................................................................................... 26 2.1.1 History of Perovskites ................................................................................................. 26 2.1.2 Properties of Perovskite Materials ............................................................................. 26 2.1.3 History of Perovskites in Solar Cell Applications ........................................................ 30 2.2 Perovskite Solar Cells Fabricated by Solution Processes ................................................... 31 2.3 Perovskite Solar Cells Fabricated by Vapour Based Processes .......................................... 34 2.3.1 Sequential Vapour Deposition Methods .................................................................... 34 2.3.2 Dual Source Thermal Co-Evaporation Methods ......................................................... 36 2.4 Inorganic Caesium Cation Perovskites............................................................................... 40 2.4.1 History and Properties ................................................................................................ 40 2.4.2 Caesium Lead Halide Perovskite Solar Cells ............................................................... 42 References: .............................................................................................................................. 47 Chapter 3 Organic Metal Halide Perovskite Solar Cells by Vapour Deposition ........................... 52 4 3.1 Introduction ...................................................................................................................... 52 3.2 Vacuum Thermal Evaporation of MAPbIXCl3-x ................................................................... 52 3.2.1 Experimental Section ................................................................................................. 52 3.2.1.1 Equipment ........................................................................................................... 52 3.2.1.2 Calibration of the Tooling Factor (TF) and Evaporation Rate ............................. 54 3.2.1.3 Fabrication and Characterization of MAPbIXCl3-x ................................................ 55 3.2.2 Results and Discussions.............................................................................................. 57 3.2.2.1 Dual Source Thermal Co-Evaporation of MAI and PbCl2 ..................................... 57 3.2.2.2 Sequential Evaporation of MAI and PbCl2 ........................................................... 59 3.3 Fabrication of MAPbIXCl3-x by Vapour-Assisted Evaporation Method .............................. 63 3.3.1 Methods and Experimental Section ........................................................................... 63 3.3.2 Results and Discussions.............................................................................................. 64 3.3.2.1
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages126 Page
-
File Size-