Rosalyn Sussman Yalow (1921–2011) the Second Woman to Win the Nobel Prize in Medicine

Total Page:16

File Type:pdf, Size:1020Kb

Rosalyn Sussman Yalow (1921–2011) the Second Woman to Win the Nobel Prize in Medicine COMMENT OBITUARY Rosalyn Sussman Yalow (1921–2011) The second woman to win the Nobel prize in medicine. he radioimmunoassay (RIA) Yalow was fascinated by what she correctly progressively displaced the latter from the technique — for which Rosalyn perceived to be the enormous potential of antibody. By measuring how much labelled Sussman Yalow received a share of a radioisotopes. But she soon decided that she insulin was freed up, they could work out TNobel prize in 1977 — has revolutionized needed a physician to join her. In what was the concentration of unlabelled insulin in a almost every field of medicine. It uses radio- perhaps the most momentous decision of her sample. These observations led to the ground- isotope tracers to measure the concentration career, she selected Solomon Berson — an breaking 1960 paper describing the develop- of tiny amounts of substances in the blood internist with no previous research training. ment and use of the RIA method for insulin. and other body fluids. Being able to measure Berson was “the most brilliant person she Over the next decade, Yalow and Berson’s levels of hormones, drugs, vitamins and had ever met”, she concluded after a short group described RIAs for human growth viruses suddenly made it possible for conversation with him. hormone, adrenocorticotropic hormone, researchers and clinicians to diagnose For more than two decades, the unusually parathyroid hormone and gastrin. In each problems and treat patients with appropri- creative and strong-willed pair worked day case they gained important insights into ate doses of medication, and to probe the and night with incredible solidarity and the compounds’ physiology and biochem- causes of numerous diseases. mutual respect. During the early 1950s, istry. Meanwhile, other investigators used Yalow, who died on 30 May aged the method to measure myriad other 89, trained in physics and never took a substances. course in biology. Yet in the second half Yalow’s laboratory was extra­ of her career she knew more physiology ordinarily generous. The few research and medicine than many physiologists fellows trained there were always given and physicians. Her inexhaustible full credit for their efforts. Visiting BETTMANN/CORBIS capacity for work — combined with scientists from every continent were her brilliance and determination — welcomed to learn about the RIA were key to her achieving a front-line procedures, and often left bearing position in medical research unthink- gifts of precious antibodies. Indeed, able to most women of her time. Yalow and Berson refused to patent Yalow was born to Jewish parents the method even though it had huge in New York City. After high school, commercial potential. she attended the all-female Hunter Despite her appetite for hard work, College, part of the city’s municipal Rosalyn strove to balance her career college system, where tuition was with caring for her family. She would free. Rejecting her mother’s sugges- frequently run home to prepare meals tion that she become a schoolteacher, for her husband Aaron and their two Yalow insisted on a career in physics. At they used radioisotopes to assess iodine children before returning to the labora- Hunter, she was captivated by nuclear and albumin metabolism; they injected the tory. She shunned feminist organizations physics in particular. substances, labelled with radioisotopes, into and classic ‘feminism’, but was a force- patients’ blood and monitored the decline in ful advocate for equal opportunities in FEMALE PIONEER radioactivity emitted. A few years later, the science, appearing before high-school girls In part because of the shortage of male clinical scientist I. Arthur Mirsky urged them whenever invited, and encouraging them to applicants, many men having been drafted to use radioisotopes to test his hypothesis that pursue scientific careers. into the army before the United States entered diabetes was caused by overly rapid degrada- When Berson died in 1972 at the age of the Second World War, Yalow was offered a tion of insulin by the enzyme insulinase. 53, Rosalyn was devastated. Many who did place at the University of Illinois at Urbana- By injecting radioactive insulin into not know her well suspected that he was the Champaign graduate school in 1941. She patients, Yalow and Berson found that insulin ‘brains’ and she the ‘muscle’. She disproved was the only woman among the university’s disappeared from the blood more slowly in the doubters: between Berson’s death and 400 staff and the first female graduate student people previously given an injection of insulin her receiving the Nobel Prize in Physiology to study physics there since 1917. than in untreated patients. They concluded or Medicine (with medical scientists Roger When Yalow finished her doctorate in that the former had produced an insulin- Guillemin and Andrew Schally), she pub- 1945, with straight As, she initially encoun- binding antibody. (Insulin bound to a large lished dozens of important papers on the tered closed doors on trying to pursue the molecule is harder to excrete or degrade.) structure and function of various hormones. ■ career she so desired. After working as an Reviewers for The Journal of Clinical Inves- assistant engineer at the Federal Telecom- tigation initially rejected the paper describ- Shimon Glick is professor emeritus at the munications Laboratory in New York City ing their results (the rejection letter starred Faculty of Health Sciences of Ben Gurion and then as a teacher at Hunter, she finally in Yalow’s Nobel-prize acceptance speech). University of the Negev, Beer Sheva, 84105 landed a research post at the Bronx Veter- Undeterred, Yalow and Berson went on to Israel. He was a research fellow and then a ans Administration Hospital in 1947. Here, discover that adding increasing amounts clinical investigator in Berson and Yalow’s she was tasked with developing the use of of unlabelled insulin to a known amount laboratory from 1961 to 1964. radioisotopes in medicine. of antibody bound to radiolabelled insulin e-mail: [email protected] 580 | NATURE | VOL 474 | 30 JUNE 2011 © 2011 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • Rosalyn S. Yalow, Phd a Personal & Scientific Memoir
    8/2/2012 54 th Annual Meeting - 2012 American Association of Physicists in Medicine Charlotte, NC Rosalyn S. Yalow, PhD A Personal & Scientific Memoir Stanley J. Goldsmith, MD Professor, Radiology & Medicine New York-Presbyterian Hospital Weill Cornell Medical College New York Rosalyn S. Yalow, PhD • Born July 19, 1921 New York City • NYC Public Schools [Walton HS, Bronx] • Hunter College: 1 st Physics Major; High Honors. BA, age 19 • Applied to Purdue University for Graduate School in Physics. Rejected as a New Yorker who was Jewish and a woman. • With onset of WWII, offered a Teaching Assistantship at University of Illinois College of Engineering in Champaign-Urbana. Only woman among 400 teaching fellows and faculty. 1 8/2/2012 Rosalyn S. Yalow, PhD • 1943: Married Aaron Yalow [a fellow Graduate Student]; 2 children: son, Benjamin; daughter, Elanna • 1945: PhD, Nuclear Physics; returned to NY; Taught Physics at Hunter College • Sought Research position; volunteered to work in Radiotherapy [now Radiation Oncology] at Columbia P&S • 1947: Moved to Bronx VA; part-time research in Radiotherapy Rosalyn S. Yalow, PhD • 1950: Employed full-time at at Bronx VA; expanded use of medical application of radioactive materials for Blood Volume determinations. Recommended adding a physician to program. Bernard Roswit, MD, Chairman, Radiation Therapy recruited a young physician who had completed training in Internal Medicine, Solomon A. Berson, MD. Rosalyn S. Yalow, PhD • 1950: Thus began an extraordinary collaboration with seminal papers in body spaces of electrolytes, albumin, globulins, thyroid iodine kinetics, role of 131 I in diagnosis and therapy of thyroid disease. • Directed skills in handling radioactivity to labeling insulin and assessing the mystery of why some diabetics [now known as maturity onset diabetics] had ample, even enlarged pancreatic islet cells, presumably secreting insulin, but nevertheless had diabetes.
    [Show full text]
  • Prezentace Aplikace Powerpoint
    KapitolyKapitoly zz neurofyziologieneurofyziologie smyslsmyslůů NeurofyziologieNeurofyziologie Ambice:Ambice: PochopenPochopeníí psychikypsychiky ččlovlověěkaka aa jejjejííchch poruch.poruch. BouBouřřlivýlivý rozvoj:rozvoj: MolekulMolekuláárnrníí neurovneurověědydy NeurofarmakologieNeurofarmakologie ZobrazovacZobrazovacíí metodymetody Nobel prices related to neuroscience 1901 Wilhelm Conrad Röntgen (Germany) "in recognition of the extraordinary services he has rendered by the discovery of the remarkable rays subsequently named after him" 1904 Ivan Petrovich Pavlov (Russia) "in recognition of his work on the physiology of digestion, through which knowledge on vital aspects of the subject has been transformed and enlarged" 1906 Camillo Golgi (Italy) and Santiago Ramón y Cajal (Spain) "in recognition of their work on the structure of the nervous system" 1909 Emil Theodor Kocher (Switzerland) "for his work on the physiology, pathology and surgery of the thyroid gland" 1914 Robert Bárány (Vienna) "for his work on the physiology and pathology of the vestibular apparatus" 1920 Chemistry: Walther Hermann Nernst (Germany) "in recognition of his work in thermochemistry" 1932 Sir Charles Scott Sherrington (Great Britain) and Edgar Douglas Adrian (Great Britain) "for their discoveries regarding the functions of neurons" 1935 Hans Spemann (Germany) "for his discovery of the organizer effect in embryonic development" 1936 Sir Henry Hallett Dale (Great Britain) and Otto Loewi (Great Britain) "for their discoveries relating to chemical transmission of
    [Show full text]
  • 書 名 等 発行年 出版社 受賞年 備考 N1 Ueber Das Zustandekommen Der
    書 名 等 発行年 出版社 受賞年 備考 Ueber das Zustandekommen der Diphtherie-immunitat und der Tetanus-Immunitat bei thieren / Emil Adolf N1 1890 Georg thieme 1901 von Behring N2 Diphtherie und tetanus immunitaet / Emil Adolf von Behring und Kitasato 19-- [Akitomo Matsuki] 1901 Malarial fever its cause, prevention and treatment containing full details for the use of travellers, University press of N3 1902 1902 sportsmen, soldiers, and residents in malarious places / by Ronald Ross liverpool Ueber die Anwendung von concentrirten chemischen Lichtstrahlen in der Medicin / von Prof. Dr. Niels N4 1899 F.C.W.Vogel 1903 Ryberg Finsen Mit 4 Abbildungen und 2 Tafeln Twenty-five years of objective study of the higher nervous activity (behaviour) of animals / Ivan N5 Petrovitch Pavlov ; translated and edited by W. Horsley Gantt ; with the collaboration of G. Volborth ; and c1928 International Publishing 1904 an introduction by Walter B. Cannon Conditioned reflexes : an investigation of the physiological activity of the cerebral cortex / by Ivan Oxford University N6 1927 1904 Petrovitch Pavlov ; translated and edited by G.V. Anrep Press N7 Die Ätiologie und die Bekämpfung der Tuberkulose / Robert Koch ; eingeleitet von M. Kirchner 1912 J.A.Barth 1905 N8 Neue Darstellung vom histologischen Bau des Centralnervensystems / von Santiago Ramón y Cajal 1893 Veit 1906 Traité des fiévres palustres : avec la description des microbes du paludisme / par Charles Louis Alphonse N9 1884 Octave Doin 1907 Laveran N10 Embryologie des Scorpions / von Ilya Ilyich Mechnikov 1870 Wilhelm Engelmann 1908 Immunität bei Infektionskrankheiten / Ilya Ilyich Mechnikov ; einzig autorisierte übersetzung von Julius N11 1902 Gustav Fischer 1908 Meyer Die experimentelle Chemotherapie der Spirillosen : Syphilis, Rückfallfieber, Hühnerspirillose, Frambösie / N12 1910 J.Springer 1908 von Paul Ehrlich und S.
    [Show full text]
  • SOLOMON A. BERSON April 22,1918-April 11,1972
    NATIONAL ACADEMY OF SCIENCES S OLOMON A. BERSON 1918—1972 A Biographical Memoir by J . E . R A L L Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1990 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. SOLOMON A. BERSON April 22,1918-April 11,1972 BY J. E. RALL OLOMON A. BERSON was born April 22, 1918, in New SYork City. His father, a Russian emigre who studied chem- ical engineering at Columbia University, went into business and became a reasonably prosperous fur dyer and the owner of his own company. He was a competent mathematician, enjoyed chess, and played duplicate bridge sufficiently well to become a life master. Solomon Berson—Sol to his many friends—was the eld- est of three children: Manny, the second, became a dentist; Gloria, the youngest, married Aaron Kelman, a physician and a friend of Sol's. In 1942 Sol married Miriam (Mimi) Gittleson. They had two daughters whom Sol adored, and a happy, warm family life. Sol discovered a taste and aptitude for music early in life. He played in chamber music groups in high school and de- veloped into an accomplished violinist. My impression has always been that he liked the presto movements best—he clearly led his entire life at a presto pace. He also played chess in high school and became sufficiently expert to play multiple games blindfolded. In 1934 he entered the City College of New York and, in 1938, received his degree.
    [Show full text]
  • Senate Resolution No. 2861 Senator GOUNARDES BY: Hunter
    Senate Resolution No. 2861 BY: Senator GOUNARDES COMMENDING Hunter College of the City University of New York upon the occasion of celebrating its 150th Anniversary WHEREAS, It is the sense of this Legislative Body to recognize and commend those exemplary institutions of higher education within the State of New York for their enduring commitment to the pursuit of academic excellence; and WHEREAS, Attendant to such concern, and in full accord with its long-standing traditions, this Legislative Body is justly proud to commend Hunter College of the City University of New York upon the occasion of celebrating its 150th Anniversary with a myriad of events to be held throughout the year; and WHEREAS, Located on Park Avenue in New York City, Hunter College is a public university which truly values learning in the liberal arts and sciences as a cornerstone of individual development and a vital foundation for a more just and inclusive society; and WHEREAS, Since its inception, Hunter College has strived to promote personal development and self-awareness, foster life-long learning, and equip each and every student with the habits of mind, character, and confidence to embody its motto: The Care of the Future is Mine; and WHEREAS, Throughout its 150-year history, many distinguished individuals have graduated from Hunter College such as Nobel Laureates, Rosalyn Sussman Yalow, Gertrude B. Elion; in addition to these notable luminaries, numerous others have gone on to become Pulitzer Prize winners, National Medal of Science winners, Presidential Medal
    [Show full text]
  • Berson, Yalow, and the JCI: the Agony and the Ecstasy
    Berson, Yalow, and the JCI: the agony and the ecstasy C. Ronald Kahn, Jesse Roth J Clin Invest. 2004;114(8):1051-1054. https://doi.org/10.1172/JCI23316. Retrospectives The isolation of insulin in 1921 by Banting, Best, Collip, and Macleod stands as one of the most dramatic stories in modern medical investigation. Only two years passed between the initial experiments in dogs to widespread human application to the awarding of the Nobel Prize in 1923. Insulin-related research has also served as a focus, at least in part, for the work of three other Nobel Prize recipients: determination of the chemical structure of insulin by Frederick Sanger in 1958; determination of the three-dimensional structures of insulin and vitamin B12 by Dorothy Hodgkin in 1964; and finally, the development of immunoassay by Solomon Berson and Rosalyn Yalow in 1959–1960, which led to a Nobel Prize for Yalow in 1977 (five years after the untimely death of Berson). The history of Yalow and Berson’s discovery and its impact on the field is an illustration of the adage that every story has two sides. Find the latest version: https://jci.me/23316/pdf 1924–2004 Berson, Yalow, and the JCI: the agony and the ecstasy C. Ronald Kahn1 and Jesse Roth2,3 1Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA. 2Institute for Medical Research, North Shore–Long Island Jewish Health System, New Hyde Park, New York, USA. 3Albert Einstein College of Medicine, New York, New York, USA. The isolation of insulin in 1921 by Banting, Best, Collip, and Macleod stands that the school would have no obligation in as one of the most dramatic stories in modern medical investigation.
    [Show full text]
  • Nobel Prizes
    W W de Herder Heroes in endocrinology: 1–11 3:R94 Review Nobel Prizes Open Access Heroes in endocrinology: Nobel Prizes Correspondence Wouter W de Herder should be addressed to W W de Herder Section of Endocrinology, Department of Internal Medicine, Erasmus MC, ’s Gravendijkwal 230, 3015 CE Rotterdam, Email The Netherlands [email protected] Abstract The Nobel Prize in Physiology or Medicine was first awarded in 1901. Since then, the Nobel Key Words Prizes in Physiology or Medicine, Chemistry and Physics have been awarded to at least 33 " diabetes distinguished researchers who were directly or indirectly involved in research into the field " pituitary of endocrinology. This paper reflects on the life histories, careers and achievements of 11 of " thyroid them: Frederick G Banting, Roger Guillemin, Philip S Hench, Bernardo A Houssay, Edward " adrenal C Kendall, E Theodor Kocher, John J R Macleod, Tadeus Reichstein, Andrew V Schally, Earl " neuroendocrinology W Sutherland, Jr and Rosalyn Yalow. All were eminent scientists, distinguished lecturers and winners of many prizes and awards. Endocrine Connections (2014) 3, R94–R104 Introduction Endocrine Connections Among all the prizes awarded for life achievements in In 1901, the first prize was awarded to the German medical research, the Nobel Prize in Physiology or physiologist Emil A von Behring (3, 4). This award heralded Medicine is considered the most prestigious. the first recognition of extraordinary advances in medicine The Swedish chemist and engineer, Alfred Bernhard that has become the legacy of Nobel’s prescient idea to Nobel (1833–1896), is well known as the inventor of recognise global excellence.
    [Show full text]
  • Race in the Age of Obama Making America More Competitive
    american academy of arts & sciences summer 2011 www.amacad.org Bulletin vol. lxiv, no. 4 Race in the Age of Obama Gerald Early, Jeffrey B. Ferguson, Korina Jocson, and David A. Hollinger Making America More Competitive, Innovative, and Healthy Harvey V. Fineberg, Cherry A. Murray, and Charles M. Vest ALSO: Social Science and the Alternative Energy Future Philanthropy in Public Education Commission on the Humanities and Social Sciences Reflections: John Lithgow Breaking the Code Around the Country Upcoming Events Induction Weekend–Cambridge September 30– Welcome Reception for New Members October 1–Induction Ceremony October 2– Symposium: American Institutions and a Civil Society Partial List of Speakers: David Souter (Supreme Court of the United States), Maj. Gen. Gregg Martin (United States Army War College), and David M. Kennedy (Stanford University) OCTOBER NOVEMBER 25th 12th Stated Meeting–Stanford Stated Meeting–Chicago in collaboration with the Chicago Humanities Perspectives on the Future of Nuclear Power Festival after Fukushima WikiLeaks and the First Amendment Introduction: Scott D. Sagan (Stanford Introduction: John A. Katzenellenbogen University) (University of Illinois at Urbana-Champaign) Speakers: Wael Al Assad (League of Arab Speakers: Geoffrey R. Stone (University of States) and Jayantha Dhanapala (Pugwash Chicago Law School), Richard A. Posner (U.S. Conferences on Science and World Affairs) Court of Appeals for the Seventh Circuit), 27th Judith Miller (formerly of The New York Times), Stated Meeting–Berkeley and Gabriel Schoenfeld (Hudson Institute; Healing the Troubled American Economy Witherspoon Institute) Introduction: Robert J. Birgeneau (Univer- DECEMBER sity of California, Berkeley) 7th Speakers: Christina Romer (University of Stated Meeting–Stanford California, Berkeley) and David H.
    [Show full text]
  • Tierversuche in Der Forschung Senatskommission Für Tierexperimentelle Forschung Der Deutschen Forschungsgemeinschaft Tierversuche in Der Forschung 3  2
    Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung 2 3 Inhalt Vorwort �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 4 Tierversuche und Tierschutz: Ethische Abwägungen Einführung �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 6 Die Entwicklung des Tierschutzgedankens in Deutschland �� � � � � � � � � � � � � 39 Ethische Aspekte von Tierversuchen und das Solidaritätsprinzip� � � � � � � � 40 Tierversuche: Definition und Zahlen Die Übertragbarkeit aus ethisch-rechtlicher Sicht� � � � � � � � � � � � � � � � � � � � � � 45 Was ist ein Tierversuch? �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 9 Das 3 R-Prinzip �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 48 Wie viele Tiere werden verwendet? �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 9 Alternativen zum Tierversuch� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 51 Wofür werden Tiere in der Forschung benötigt? �� � � � � � � � � � � � � � � � � � � � � � 11 Grenzen von Alternativmethoden� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 54 Welche Tierarten werden eingesetzt? ��
    [Show full text]
  • Tierversuche in Der Forschung Senatskommission Für Tierexperimentelle Forschung Der Deutschen Forschungsgemeinschaft Tierversuche in Der Forschung 2 3
    Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung Senatskommission für tierexperimentelle Forschung der Deutschen Forschungsgemeinschaft Tierversuche in der Forschung 2 3 Inhalt Vorwort . 4 Tierversuche und Tierschutz: Ethische Abwägungen Einführung . 6 Die Entwicklung des Tierschutzgedankens in Deutschland . 39 Ethische Aspekte von Tierversuchen und das Solidaritätsprinzip. 40 Tierversuche: Definition und Zahlen Die Übertragbarkeit aus ethisch-rechtlicher Sicht. 45 Was ist ein Tierversuch? . 9 Das 3 R-Prinzip . 48 Wie viele Tiere werden verwendet? . 9 Alternativen zum Tierversuch. 51 Wofür werden Tiere in der Forschung benötigt? . 11 Grenzen von Alternativmethoden. 54 Welche Tierarten werden eingesetzt? . 11 Die Basler Deklaration . 56 Europaweite Entwicklung . 14 Tierversuche in Deutschland: Vom Antrag bis zur Durchführung Tierexperimentelle Praxis: Einsatzbereiche für Versuchstiere Europäische Regelungen für Tierversuche . 59 Grundlagenforschung. 17 Tierversuche unter Genehmigungsvorbehalt . 60 Medizinische Forschung. 18 Rechtliche Grundlagen . 60 Nobelpreiswürdig: Herausragende wissenschaftliche Erkenntnisse . 20 Genehmigungsverfahren . 63 Diagnostik . 22 Durchführung von Tierversuchen . 64 Transplantationsmedizin . 25 Qualifizierte Überwachung. 68 Zell- und Gewebeersatz beim Menschen. 26 Belastungen für die Tiere . 69 Stammzellforschung . 27 Die Tierschutz-Verbandsklage . 71 Genomforschung . 28 Neurowissenschaften . 31 Anhang Veterinärmedizinische Forschung . 33 Tierversuche
    [Show full text]
  • L@€•@ Awardcitation-I
    Georg de Hevesy Nuclear Medicine Pioneer AwardCitation-I 986 Rosalyn S. Yalow and Solomon A. Berson days, we had assays scheduled and Sol would join in pipetting sample after sample, sometimes timing how long it took to do a rack of test tubes and coming up with schemes to accelerate the number of samples we could handle each hour. On other nights, he would pause to review data. One evening, I had just finished extracting insulin from an islet cell tumor in prepara tion to identify and characterize human proinsulin. The next step was to lypholize, or freeze dry, the tumor extract so as to reduce the volume. As it was 10:00 p.m., I was preparing to freeze the sample and pick up where I left off the next day. Sol walked into my lab and asked what I was doing? I was pleased to be at such a significant step . and I think he was pleased . but he was surprised that I would stop at that point. So at 10:30 p.m., the two of us assembled vacuum tubing to every aspirator in the lab to create the vacuum necessary to reduce the sample volume. If it had been his sample, I'm convinced he would have worked continuously until human proinsulin was confirmed and the struc ture characterized. L@―@ RosalynS. Yalow,PhD,NobelLaureatein Medicineand Physiology, 1977. n preparing this tribute to the 1986 Hevesy Nuclear Pioneers my task brought to mind the dilemma of I “Salieri―in “Amadeus―(1 ). I share with Salieri the frustration of explaining to others with words what it rr was like to behold genius; two fellow humans with a inexhaustible capacity for hard work and creativity, with a talent for knowing the right experiment to do, ./ for grasping the significance of the findings, for writing manuscripts with clarity and speed, with a love and excitement for exploring, for creating, for teaching oth ers.
    [Show full text]