On the Edge of Research and Technological Application: a Critical Review of Electromethanogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improving Microbial Electrosynthesis of Polyhydroxybutyrate (PHB) From
bioRxiv preprint doi: https://doi.org/10.1101/214577; this version posted November 7, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Improving microbial electrosynthesis of polyhydroxybutyrate (PHB) from CO2 by Rhodopseudomonas palustris TIE-1 using an immobilized iron complex modified cathode Karthikeyan Rengasamy, Tahina Onina Ranaivoarisoa, Rajesh Singh, Arpita Bose* Department of Biology, Washington University in Saint Louis, St. Louis, MO, 63130, USA. Abstract Microbial electrosynthesis (MES) is a promising bioelectrochemical approach to produce biochemicals. A previous study showed that Rhodopseudomonas palustris TIE-1 can directly use poised electrodes as electron donors for photoautotrophic growth at cathodic potentials that avoid electrolytic H2 production (photoelectroautotrophy). To make TIE-1 an effective biocatalyst for MES, we need to improve its electron uptake ability and growth under photoelectroautotrophic conditions. Because TIE-1 interacts with various forms of iron while using it as a source of electrons for photoautotrophy (photoferrotrophy), we tested the ability of iron-based redox mediators to enhance direct electron uptake. Our data show that soluble iron cannot act as a redox mediator for electron uptake by TIE-1 from a cathode poised at +100mV vs. Standard Hydrogen electrode. We then tested whether an immobilized iron-based redox mediator Prussian Blue (PB) can enhance electron uptake by TIE-1. Chronoamperometry indicates that cathodic current uptake by TIE-1 increased from 1.47 ± 0.04 to 5.6 ± 0.09 µA/cm2 (3.8 times) and the production of the bioplastic, polyhydroxybutyrate (PHB) improved from 13.5 ± 0.2 g/L to 18.8 ± 0.5 g/L (1.4 times) on electrodes coated with PB. -
Seasonal Energy Storage Potential Assessment of Wwtps with Power-To-Methane Technology
energies Article Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology Zoltán Csed˝o 1,2, Botond Sinóros-Szabó 1 and Máté Zavarkó 1,2,* 1 Power-to-Gas Hungary Kft, 5000 Szolnok, Hungary; [email protected] (Z.C.); [email protected] (B.S.-S.) 2 Department of Management and Organization, Corvinus University of Budapest, 1093 Budapest, Hungary * Correspondence: [email protected] Received: 29 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: Power-to-methane technology (P2M) deployment at wastewater treatment plants (WWTPs) for seasonal energy storage might land on the agenda of decision-makers across EU countries, since large WWTPs produce a notable volume of biogas that could be injected into the natural gas grid with remarkable storage capacities. Because of the recent rapid increase of local photovoltaics (PV), it is essential to explore the role of WWTPs in energy storage and the conditions under which this potential can be realized. This study integrates a techno-economic assessment of P2M technology with commercial/investment attractiveness of seasonal energy storage at large WWTPs. Findings show that a standardized 1 MWel P2M technology would fit with most potential sites. This is in line with the current technology readiness level of P2M, but increasing electricity prices and limited financial resources of WWTPs would decrease the commercial attractiveness of P2M technology deployment. Based on a Hungarian case study, public funding, biomethane feed-in tariff and minimized or compensated surplus electricity sourcing costs are essential to realize the energy storage potential at WWTPs. Keywords: seasonal energy storage; power-to-methane; wastewater treatment plants; techno- economic assessment 1. -
Development of a Scalable Microbial Electrolysis Cell and Investigations of Exoelectrogenic Pure and Mixed Communities
The Pennsylvania State University The Graduate School College of Engineering DEVELOPMENT OF A SCALABLE MICROBIAL ELECTROLYSIS CELL AND INVESTIGATIONS OF EXOELECTROGENIC PURE AND MIXED COMMUNITIES A Dissertation in Environmental Engineering by Douglas F. Call © 2011 Douglas F. Call Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2011 The dissertation of Douglas F. Call was reviewed and approved* by the following: Bruce E. Logan Kappe Professor of Environmental Engineering Dissertation Advisor Chair of Committee John M. Regan Associate Professor of Environmental Engineering Brian A. Dempsey Professor of Environmental Engineering Ming Tien Professor of Biochemistry Peggy Johnson Professor of Civil Engineering Head of the Department of Civil and Environmental Engineering *Signatures are on file in the Graduate School ii ABSTRACT Bioelectrochemical systems (BESs) combine the fields of microbiology and electrochemistry for the production of electricity, gaseous fuels, or chemicals from biodegradable material. Advancing these systems towards large-scale applications requires improvements in both reactor designs and our understanding of the microbial ecology of exoelectrogenic biofilms. The work described in this dissertation addresses these areas through the development of a scalable microbial electrolysis cell (MEC), characterization of exoelectrogenic biofilms using the molecular technique fluorescent in- situ hybridization (FISH), and investigation into the current-producing and substrate- utilizing capabilities of the exoelectrogenic bacterium Geobacter sulfurreducens. Stainless Steel Brush Cathodes. MECs are a promising alternative method for producing hydrogen (H2) from biomass, yet they have been limited to the lab scale due in part to the inherent non-scalability and costs of electrodes. To address this problem, I investigated alternatives to the traditionally used platinized cathode. -
Microbial Electrolysis Cell Platform for Simultaneous Waste Biorefinery and Clean Electrofuels Generation: Current Situation, Ch
Progress in Energy and Combustion Science 63 (2017) 119À145 Contents lists available at ScienceDirect Progress in Energy and Combustion Science journal homepage: www.elsevier.com/locate/pecs Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current situation, challenges and future perspectives GuangyinTagedPD1XX ZhenD2XaX,b,*, XueqinD3XX LuD4XcX,**, GopalakrishnanD5XX KumarD6XdX, PD7XXeter BakonyiD8XeX, KaiqinD9XX XuD10XbX,**, YoucaiD1XX ZhaoD12XfX TagedPShanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China b Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan c Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan d Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam e Research Institute on Bioengineering, Membrane Technology and Energetics, University of Pannonia, Egyetem ut 10, 8200 Veszprem, Hungary f The State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 200092, Shanghai, PR China ARTICLETAGEDP INFO ABSTRACTTAGEDP Article History: Microbial electrolysis cell (MEC) holds the flexible potentials -
Recent Advances in the Roles of Minerals for Enhanced Microbial Extracellular Electron Transfer
UC Davis UC Davis Previously Published Works Title Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer Permalink https://escholarship.org/uc/item/5503m936 Authors Dong, G Chen, Y Yan, Z et al. Publication Date 2020-12-01 DOI 10.1016/j.rser.2020.110404 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Renewable and Sustainable Energy Reviews 134 (2020) 110404 Contents lists available at ScienceDirect Renewable and Sustainable Energy Reviews journal homepage: http://www.elsevier.com/locate/rser Recent advances in the roles of minerals for enhanced microbial extracellular electron transfer Guowen Dong a,e,1, Yibin Chen b,1, Zhiying Yan d, Jing Zhang f, Xiaoliang Ji a, Honghui Wang f, Randy A. Dahlgren a,c, Fang Chen b, Xu Shang a, Zheng Chen a,f,* a Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, PR China b Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing, 350300, PR China c Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, United States d Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China e Fujian Provincial Key Laboratory of Resource and Environment Monitoring & Sustainable Management and Utilization, College of Resources and Chemical Engineering, Sanming University, Sanming, 365000, PR China f School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou, 363105, PR China ARTICLE INFO ABSTRACT Keywords: Minerals are ubiquitous in the natural environment and have close contact with microorganisms. -
Insights Into Advancements and Electrons Transfer Mechanisms of Electrogens in Benthic Microbial Fuel Cells
membranes Review Insights into Advancements and Electrons Transfer Mechanisms of Electrogens in Benthic Microbial Fuel Cells Mohammad Faisal Umar 1 , Syed Zaghum Abbas 2,* , Mohamad Nasir Mohamad Ibrahim 3 , Norli Ismail 1 and Mohd Rafatullah 1,* 1 Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; [email protected] (M.F.U.); [email protected] (N.I.) 2 Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China 3 School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; [email protected] * Correspondence: [email protected] (S.Z.A.); [email protected] or [email protected] (M.R.); Tel.: +60-4-6532111 (M.R.); Fax: +60-4-656375 (M.R.) Received: 7 August 2020; Accepted: 19 August 2020; Published: 28 August 2020 Abstract: Benthic microbial fuel cells (BMFCs) are a kind of microbial fuel cell (MFC), distinguished by the absence of a membrane. BMFCs are an ecofriendly technology with a prominent role in renewable energy harvesting and the bioremediation of organic pollutants through electrogens. Electrogens act as catalysts to increase the rate of reaction in the anodic chamber, acting in electrons transfer to the cathode. This electron transfer towards the anode can either be direct or indirect using exoelectrogens by oxidizing organic matter. The performance of a BMFC also varies with the types of substrates used, which may be sugar molasses, sucrose, rice paddy, etc. This review presents insights into the use of BMFCs for the bioremediation of pollutants and for renewable energy production via different electron pathways. Keywords: bioremediation; renewable energy; organic pollutants; electrogens; wastewater 1. -
Electrically Conductive Bacterial Nanowires Produced by Shewanella Oneidensis Strain MR-1 and Other Microorganisms
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms Yuri A. Gorby*†, Svetlana Yanina*, Jeffrey S. McLean*, Kevin M. Rosso*, Dianne Moyles‡, Alice Dohnalkova*, Terry J. Beveridge‡, In Seop Chang§, Byung Hong Kim¶, Kyung Shik Kim¶, David E. Culley*, Samantha B. Reed*, Margaret F. Romine*, Daad A. Saffariniʈ, Eric A. Hill*, Liang Shi*, Dwayne A. Elias*,**, David W. Kennedy*, Grigoriy Pinchuk*, Kazuya Watanabe††, Shun’ichi Ishii††, Bruce Logan‡‡, Kenneth H. Nealson§§, and Jim K. Fredrickson* *Pacific Northwest National Laboratory, Richland, WA 99352; ‡Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1; ¶Water Environment and Remediation Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea; §Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea; ʈDepartment of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211; **Department of Agriculture Biochemistry, University of Missouri, Columbia, MO 65211; ††Marine Biotechnology Institute, Heita, Kamaishi, Iwate 026-0001, Japan; ‡‡Department of Environmental Engineering, Pennsylvania State University, University Park, PA 16802; and §§Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089 Communicated by J. Woodland Hastings, Harvard University, Cambridge, MA, June 6, 2006 (received for review September 20, 2005) Shewanella oneidensis MR-1 produced electrically conductive pi- from 50 to Ͼ150 nm in diameter and extending tens of microns or lus-like appendages called bacterial nanowires in direct response longer (Fig. 1A; and see Fig. 5A, which is published as supporting to electron-acceptor limitation. Mutants deficient in genes for information on the PNAS web site). -
Biogas Upgrading / CO Reduction Using Renewable Hydrogen And
Biogas Upgrading / CO2 Reduction Using Renewable Hydrogen and Biocatalysts U.S. Department of Agriculture and Department of Energy Circular Carbon Economy Summit Denver, CO July 24-25, 2018 1 SoCalGas Largest U.S. natural gas distribution utility 140 years young Population 21 million 8,000 employees 1 Tcf/year 2 SoCalGas Transmission System Our Focus: Customer Needs and Emerging Trends Industry Themes Implications Solutions • Rising utility bills • Appliance energy efficiency • Develop technologies to meet air quality standards Affordability • Large percentage of customers on assistance • Utilize existing infrastructure and domestic supplies • Need to continue to provide affordable energy of natural gas • Acute public heath problem • Appliance emission standards • Renewable natural gas for transportation • Transportation is 80% of NOx Air Quality / NOx • Low Nox engines • Potential to replace diesel with clean fuels • Fuel cells • Demand for renewable gas • Renewable gas from biomass and excess wind & Greenhouse Gas • Wind and solar overgeneration (duck curve) solar power (power-to-gas) Emissions • Depressed power prices • Hydrogen for fuel and pipeline blending • Growing need for energy storage solutions • Electric and gas grid integration • Carbon up-cycling • Pipeline Monitoring Reliability and • Leak detection • Enhance pipeline safety Safety • Monitor and reduce methane emissions • Distributed energy applications • Robust power reliability 4 RD&D Objectives (PUC Code 740.1) 1. Environmental improvement 2. Public and employee safety 3. Conservation by efficient resource use or by reducing or shifting system load 4. Development of new resources and processes, particularly renewable resources and processes which further supply technologies 5. Improve operating efficiency and reliability or otherwise reduce operating costs 5 Research, Development and Demonstration (RD&D) End-Use Appliances Clean Transportation Emerging Technologies Low-carbon Resources . -
Biosensors and Bioelectronics Bioelectrochemical Systems
Biosensors and Bioelectronics 142 (2019) 111576 Contents lists available at ScienceDirect Biosensors and Bioelectronics journal homepage: www.elsevier.com/locate/bios Bioelectrochemical systems: Sustainable bio-energy powerhouses T ∗ Mahwash Mahar Gul, Khuram Shahzad Ahmad Department of Environmental Sciences, Fatima Jinnah Women University, The Mall, Rawalpindi, 46000, Pakistan ARTICLE INFO ABSTRACT Keywords: Bioelectrochemical systems comprise of several types of cells, from basic microbial fuel cells (MFC) to photo- Microbial fuel cells synthetic MFCs and from plant MFCs to biophotovoltaics. All these cells employ bio entities at anode to produce Photo MFCs bioenergy by catalysing organic substrates while some systems convert solar irradiation to energy. The current Plant MFCs review epitomizes the above-mentioned fuel cell systems and elucidates their electrical performances. Microbial Biophotovoltaics fuel cells have advantages over conventional fuel cells in terms of being sustainable whilst producing impressive Bioelectricity power efficiencies without any net carbon emissions. They can be utilized for several environmentally friendly applications including wastewater treatment and bio-hydrogen generation, apart from producing clean and green electricity. Multifarious heterotrophic and autotrophic microbes and plants have been studied for their potential as imperative components of fuel cell technology. MFCs also display some interesting applications, such as integration of plant MFCs into architecture to produce “green” cities. Biophotovoltaic technology is the current hot cake in this field, which aspires to achieve significant electrical efficiencies by light-induced water splitting mechanisms. Furthermore, the utilization of BPVs in space renders it a technology for the future. Compared with other fuel cell systems, this technology is still in its inception and requires further efforts to endeavour its use on commercial or industrial level. -
SU Agenda Template
University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING AND THE ENVIRONMENT Mathematical Modelling and Simulation of Biofuel Cells by Mohamad Hussein Osman Thesis submitted for the degree of Doctor of Philosophy December 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING AND THE ENVIRONMENT MATHEMATICAL MODELLING AND SIMULATION OF BIOFUEL CELLS by Mohamad Hussein Osman Bio-fuel cells are driven by diverse and abundant bio-fuels and biological catalysts. The production/consumption cycle of bio-fuels is considered to be carbon neutral and, in princi- ple, more sustainable than that of conventional fuel cells. The cost benefits over traditional precious-metal catalysts, and the mild operating conditions represent further advantages. It is important that mathematical models are developed to reduce the burden on labo- ratory based testing and accelerate the development of practical systems. -
GCRP Tech Report 2012 Spormann-Logan
GCEP Technical Progress Report April 2013 Project: Capturing Electrical Current via Microbes to Produce Methane Alfred M. Spormann, Professor, Department of Chemical Engineering, and of Civil and Environmental Engineering, Stanford University; Bruce Logan, Professor, Department of Civil and Environmental Engineering, The Pennsylvania State University Svenja T. Lohner, postdoctoral researcher, Department of Civil and Environmental Engineering, Stanford University Michael Siegert, Douglas F. Call, postdoctoral researchers, Dept. of Civil and Environmental Engineering, The Pennsylvania State University Abstract The proposed microbial electromethanogenesis cell (MEMC) process will allow for the cost effec- tive production of methane from CO2 produced, for example, from gas/coal powered power plants or anaerobic digestion of bio-waste. The MEMC technology used will allow for production of CH4 with high efficiency relative to the electrical input. The technology is currently at the con- cept stage, with the scientific feasibility proven. However, the underlying science fundamentals such as the molecular and microbiological mechanisms of electron transfer from cathodes via in- termediates to cells and of the stability of the cathodic microbial communities are only insuffi- ciently understood. This lack of understanding presents the most significant bottleneck that needs to be solved before such technology can be deployed. The proposed research will advance both the science and the technology of this process, and the outcome should enable commerciali- zation of this technology. Background Recently, it has been discovered that CO2 can be directly converted to methane by microorganisms that harvest electrical energy from a cathode of a microbial electrolysis cell (Cheng et al. 2009). While the mechanism(s) behind “electromethanogenesis” are not fully understood, the experiment has been repeated by independent laboratories and is currently under development for industrial applications. -
The Ins and Outs of Microorganism–Electrode Electron Transfer Reactions
The ins and outs of microorganism–electrode electron transfer reactions Kumar, A., Huan-Hsuan Hsu, L., Kavanagh, P., Barrière, F., Lens, P. N. L., Lapinsonniere, L., Lienhard V, J. H., Schröder, U., Jiang, X., & Leech, D. (2017). The ins and outs of microorganism–electrode electron transfer reactions. Nature Reviews Chemistry, (1), [0024]. https://doi.org/10.1038/s41570-017-0024 Published in: Nature Reviews Chemistry Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 Nature Publishing Group. This work is made available subject to the publisher's terms. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:29. Sep. 2021 The ins and outs of microbial-electrode electron transfer reactions Amit Kumara&f, Huan-Hsuan Hsub Paul Kavanaghc, Frédéric Barrièred, Piet N.L. Lense, Laure Lapinsonniereb, John H. Lienhard Vf, Uwe Schröderg, Jiang Xiaochengb, Dónal Leechc aDepartment of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, USA.