A Critical Comparison of Ferrites with Other Magnetic Materials ® a Division of Spang and Company

Total Page:16

File Type:pdf, Size:1020Kb

A Critical Comparison of Ferrites with Other Magnetic Materials ® a Division of Spang and Company ® Division of Spang & Company A Critical Comparison of Ferrites with Other Magnetic Materials ® A Division of Spang and Company Basic Differences- Material Magnetic Losses The magnetic losses in an A.C. Composition Considerations- application can be represented by and Structure Magnetic and the familiar Legg equation: The difference in properties and Mechanical Rm = µfL(ef + aBm +c) performance of ferrites as compared Properties with most other magnetic materials where: Rm = total core loss in is due to the fact that the ferrites are Saturation Magnetization ohms oxide materials rather than metals. As mentioned previously, the e = eddy current Ferromagnetism is derived from the highest saturation values are found coefficient unpaired electron spins in only a few in the metals and alloys. Thus, if high a = hysteresis metal atoms, these being iron, flux densities are required in high coefficient cobalt, nickel, manganese, and power applications, the bulk metals, c = residual loss some rare earth elements. It is not iron, silicon-iron and cobalt-iron are coefficient surprising that the highest magnetic unexcelled. Since the flux in max- µ = magnetic moments and therefore the highest wells Ø = BA, where B = flux density permeability saturation magnetizations are to be in gausses and A = cross-sectional f = frequency in found in the metals themselves or in area in cm², obtaining high total flux hertz alloys of these metals. The oxides, in materials such as ferrites or per- L = inductance in on the other hand, suffer from a dilu- malloy powder cores can be accom- henries tion effect of the large oxygen ions in plished only by increasing the Bm = maximum flux the crystal lattice. In addition, the net cross-sectional area. Powdered iron density in moment resulting from ferromag- has a fairly high saturation value, but gausses netic alignment of the atomic spins exhibits low permeabilities. is reduced because a different, less Eddy current losses will increase efficient type of exchange mecha- Curie Temperatures quite rapidly with frequency. In bulk nism is operative. The oxygen ions All magnetic materials lose their metals, these high frequency losses do serve a useful purpose, however, ferromagnetism at the Curie temper- can be reduced by reducing the since they insulate the metal ions ature. One overriding consideration thickness of the material perpendic- and, therefore, greatly increase the for a magnetic material is that the ular to the flux flow. This is accom- resistivity. This property makes the Curie point of the material be well plished by using thin gauge tapes or ferrite especially useful at higher fre- above the proposed operating tem- laminations or by powdering and quencies. The purpose of this paper peratures. Table 1 lists the Curie insulating the particles. In ferrites, is to list the various considerations Temperatures of the various the same result is obtained by which enter into the choice of a ma- materials. The Curie point depends increasing the resistivity by many terial for a specific application and to only on composition and not on orders of magnitude. Thus, at the contrast pertinent ferrite properties geometry. Even though some of the highest operating frequencies where with those of bulk metal or powdered magnetic materials shown can be further gauge or particle reduction is metal materials. used at higher operating tempera- impractical, ferrites are the only tures than others, very often the tem- available materials. perature limitations of the accessory items (wire insulation, potting or damping compound) can be more limiting; in this case, no practical advantage may be gained by the higher curie point materials. 1 The hysteresis losses are propor- Permeability this phase is emphasized by the fact tional to the flux density and can be Permeability is a function of com- that the market value for computer depicted as the area inside the hys- position and processing. The highest magnetics is now greater in dollars teresis loop. High hysteresis losses initial permeabilities (those meas- to that of the power materials market. are accompanied by the presence of ured at very low flux levels) are found It is interesting to note that disk unwanted harmonics. The nickel- in the nickel-iron alloys, particularly media and bubble materials are fer- iron (permalloy) alloys have low hys- in supermalloy where the value is rite type oxides. teresis losses and a great asset to about 100,000. Powdered iron cores the permalloy powder core is that have low permeabilities (10-100) Brittleness these low losses are maintained with while permalloy powder cores are One drawback to the ferrite core the accompanying reduction in eddy somewhat higher (15-550). Ferrites as compared with metal cores is its current losses. can be made over a wide range of brittleness. Being ceramic in nature, The residual losses are not too permeabilities. The linear filter type care must be exercised in the han- well understood and perhaps repre- permeabilities vary from 100-2000, dling of these cores. Powder cores sent an expression of our ignorance while those used in power applica- are also somewhat brittle and similar of the system. They apparently are tions range from 3000-1 5,000. As the precautions are required. Although tied in partially to absorption of operating frequency increases, fer- metal tape cores are not brittle, energy from the system by gyromag- rites with lower permeabilities are (except amorphous metal cores), netic resonance. used because these have distinctly they nevertheless are sensitive to A listing of the various losses in the lower losses in these regions. The strain and mechanical shock, espe- materials under consideration is permeabilities for a variety of cially in the high permeability given in Table 1. materials are listed in Table 1. materials. Consequently, tape wound cores are often embedded in Figure of Merit a damping compound which pre- A useful figure of merit for linear vents the transfer of strain or shock core materials is the µQ product. to the cores. Values of this factor are tabulated in Table 1 . At frequencies of 100 KHz Hardness and above, the value for ferrites is Ferrites are very hard materials as considerably above all other compared with the other materials materials. under consideration. This property is especially useful in applications in Squareness which wear is a factor. Conse- The squareness ratio is defined as quently, ferrite material is being used the ratio of Br to Bm and is especially extensively in magnetic recorder important in memory and switching head applications. core applications. Magnesium- manganese ferrites can be produced with extremely high squareness ratios. While some metal tape and bobbin cores possess similar high ratios, their higher cost and difficulty in miniaturization made the ferrites the material of choice in large scale memory applications in early com- puter models. Thin magnetic film memories, which may be considered bulk metals, have become increas- ingly important, and along with semi- conductor, disk, tape and bubble memories, have replaced the old core memories. The importance of 2 MAGNETICS • BUTLER, PA ® A Division of Spang and Company Geometry Tunability Magnetic Shielding Considerations An exact inductance is required in If magnetic components are rela- certain L-C circuits. If the shape of tively close in a circuit, the fields Formability the inductor is toroidal, the induc- produced by one component may The three types of materials- bulk tance can be trimmed only by the affect the performance of other metal, powdered metal and ferrite - addition or removal of turns, a time cores. One solution is to increase the are produced by widely varying tech- consuming and costly procedure. If space between components. This niques and consequently the availa- a ferrite pot core is used, the tuning increases the overall size of the sys- ble geometries also vary. can be accomplished by means of a tem. Another is to use a magnetic Bulk metals - These are screw-type trimmer core which shield which increases weight and produced mostly by standard changes the effective air gap of the size. A ferrite pot core is inherently metallurgical process involving core. Threaded rods of powdered self-shielding by nature of the melting followed by hot and cold iron or ferrite materials are used enclosed magnetic circuit. rolling. The sheet material extensively as tuning elements in produced is either slit and wound slug tuned inductors. into tape or bobbin cores or punched into laminations. Pho- Winding Considerations toetching, a new method of form- Winding turns on a toroid involves ing small complex parts, avoids specialized equipment and the proc- costly tooling, and produces ess involves winding each core stress-free parts. separately in a relatively time con- suming operation. The bobbins used Powdered Iron and permalloy - in ferrite pot cores can be wound These materials are always die- many at a time on a rather simple pressed into toroids or slugs, machine. This ease of winding con- molypermalloy usually in toroids stitutes an important advantage for and powdered iron into slugs. ferrite pot cores. Ferrites - Because ferrites are produced by a ceramic technique, they can be made in a large num- ber of shapes. Unlike the bulk metals, they can be molded directly, and unlike the powdered permalloy, they can be machined and ground to close tolerances after firing. Various forming processes for ferrites include die pressing, extrusion, hydrostatic pressing and hot pressing. The available shapes include toroids, E-l cores, U-l cores, pot cores, rods, tubes, beads and blocks. 3 Inductance Figure 1 — Ferrite Toroids Stability Initial Permeability (µo) Vs. Temperature Considerations Temperature Stability In telecommunications circuitry (tuned L-C filters), the maintenance of a near-constant inductance as a function of temperature and time is most critical. One method of achiev- ing this stability is by the insertion of an air gap.
Recommended publications
  • TAPE WOUND CORES 48 Alloy | Orthonol | Magnesil | Permalloy 80 | Supermalloy
    TAPE WOUND CORES 48 Alloy | Orthonol | Magnesil | Permalloy 80 | Supermalloy Orthonol M a 48 A g d Cores lloy n un e o s W i l e p a T B S o u y p o l e l r a m b b i n C o 0 r e s 8 y o l l a m r e P WEBSITES Visit Magnetics’ websites for a wealth of easy to access information on soft magnetic cores and materials… All product specifications for Magnetics’ Ferrite Cores, Powder Cores and Tape The Software section of the website provides access to the Magnetics’ software Wound Cores can be found quickly by using the menu driven product locator. design aids for designing Common Mode Filters, Current Transformers, Inductors Magnetics’ Digital Library contains all of the company’s technical bulletins, white and MagAmps. papers and design manuals, which can be viewed on-screen or downloaded. HEADQUARTERS MAGNETICS INTERNATIONAL 110 Delta Drive 13/F 1-3 Chatham Road South Pittsburgh, PA 15238 Tsim Sha Tsui USA Kowloon, Hong Kong (p) 1.800.245.3984 (p) +852.3102.9337 1.412.696.1333 +86.139.1147.1417 [email protected] [email protected] www.mag-inc.com www.mag-inc.com.cn CONTENTS HISTORY OF THE Index STRIP WOUND CORE Magnetics Pioneered Strip Wound Cores. History Magnetics was established in 1949 when the commercial market for high History ............................ 1 permeability magnetic materials was virtually non-existent and development in this field was just taking root. The new simplicity and reliability with which magnetic Materials & Applications components could be used opened many doors in the field of electronics.
    [Show full text]
  • Magnetic and Electrical Characteristics of Permalloy Thin Tape Bobbin Cores
    NASA/TM—2005-214012 AIAA–2004–5749 Magnetic and Electrical Characteristics of Permalloy Thin Tape Bobbin Cores Gene E. Schwarze Glenn Research Center, Cleveland, Ohio William R. Wieserman University of Pittsburgh, Johnstown Campus, Johnstown, Pennsylvania Janis M. Niedra QSS Group, Inc., Cleveland, Ohio December 2005 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. Collected the advancement of aeronautics and space papers from scientific and technical science. The NASA Scientific and Technical conferences, symposia, seminars, or other Information (STI) Program Office plays a key part meetings sponsored or cosponsored by in helping NASA maintain this important role. NASA. The NASA STI Program Office is operated by • SPECIAL PUBLICATION. Scientific, Langley Research Center, the Lead Center for technical, or historical information from NASA’s scientific and technical information. The NASA programs, projects, and missions, NASA STI Program Office provides access to the often concerned with subjects having NASA STI Database, the largest collection of substantial public interest. aeronautical and space science STI in the world. The Program Office is also NASA’s institutional • TECHNICAL TRANSLATION. English- mechanism for disseminating the results of its language translations of foreign scientific research and development activities. These results and technical material pertinent to NASA’s are published by NASA in the NASA STI Report mission. Series, which includes the following report types: Specialized services that complement the STI • TECHNICAL PUBLICATION. Reports of Program Office’s diverse offerings include completed research or a major significant creating custom thesauri, building customized phase of research that present the results of databases, organizing and publishing research NASA programs and include extensive data results .
    [Show full text]
  • MAGNETORESISTIVE (MR) HEADS and the EARLIEST MR HEAD-BASED DISK DRIVES: SAWMILL and CORSAIR Christopher H
    MAGNETORESISTIVE (MR) HEADS AND THE EARLIEST MR HEAD-BASED DISK DRIVES: SAWMILL AND CORSAIR Christopher H. Bajorek, Storage Interest Group Computer History Museum, Mountain View, CA (Updated November, 2014) Why it is Important Hard disk drives (HDDs) have survived as the information storage device of choice because of the sustained and steep advances achieved in storage density. Density advances required downward scaling of the key components. The resulting smaller head-disk spacing and reduced magnetic fields from the disk were the key technology challenges. The reduction in the size of stored bits caused signal amplitude reductions which necessitated the invention of more powerful detectors. Magnetoresistive (MR) heads were the successful answer. These new film heads, together with new film disks, provided successful components for future HDDs up to the present time. They solved the joint challenge of ultra small signals and ever-reduced spacing of the heads and disks. Since 1990, this combination improved data density, with concomitant cost per bit reductions, by approximately 20,000 times. Two companies led the industry in independently developing MR heads, IBM and HP. IBM was first to market in 1990. HP was second in 1994. Seagate also benefited from the HP heads since 1995. The rest of the industry started using MR heads in 1996. Magnetoresistive (MR) Heads Prior to 1990, all hard disk drives used the same inductive head for reading and writing. The readback signal amplitude from an inductive head is proportional to the magnetic flux captured from a stored bit, to the number of turns of wire wrapped on the head, and to the velocity at which the head flies on the disk.
    [Show full text]
  • Magnetix Layout a with C
    WOUND CORES STRIP WOUND CORES STRIP WO x www.mag-inc.com Visit Magnetics’ website for a wealth of easy to access information on soft magnetic cores and materials… All product specifications for Magnetics’ Ferrite Cores, Powder Cores and Strip Wound Cores can be found quickly by using the menu driven product locator. Magnetics’ Digital Library contains all of the company’s technical bulletins, white papers and design manuals, which can be viewed on-screen or downloaded. The Software section of the website provides access to the Magnetics’ software design aids for designing Common Mode Filters, Current Transformers, Inductors and MagAmps. Contact information for Magnetics’ global distribution network, including access to STOCKCHECK, an easy way to check distributor inventory via the web. Contact Magnetics P.O. Box 11422 Pittsburgh, PA 15238-0422 web: www.mag-inc.com Phone: 412-696-1300 or 1-800-245-3984 Fax: 412-696-0333 email: [email protected] 2 MAGNETICS – www.mag-inc.com MAGNETICS STRIP WOUND CORES INDEX INTRODUCTION History ................................................1 HISTORY OF THE STRIP WOUND CORE Materials and Applications ................2 Magnetics pioneered Strip Wound Cores. Although the groundwork for the formation of modern magnetic devices was Tape Wound Cores ............................4 laid by German military in World War I, it was after World War II that tape Bobbin Cores ....................................8 wound cores had their beginnings as electronics opened the way to new weapons systems. The Naval Ordnance Laboratory in Washington, DC turned Cut Cores and Special Cores............11 its attention to facets of magnetism in devices where the vacuum tube had a Other Products ................................12 serious drawback - fragility.
    [Show full text]
  • Physics and Measurements of Magnetic Materials
    Physics and measurements of magnetic materials S. Sgobba CERN, Geneva, Switzerland Abstract Magnetic materials, both hard and soft, are used extensively in several components of particle accelerators. Magnetically soft iron–nickel alloys are used as shields for the vacuum chambers of accelerator injection and extraction septa; Fe-based material is widely employed for cores of accelerator and experiment magnets; soft spinel ferrites are used in collimators to damp trapped modes; innovative materials such as amorphous or nanocrystalline core materials are envisaged in transformers for high- frequency polyphase resonant convertors for application to the International Linear Collider (ILC). In the field of fusion, for induction cores of the linac of heavy-ion inertial fusion energy accelerators, based on induction accelerators requiring some 107 kg of magnetic materials, nanocrystalline materials would show the best performance in terms of core losses for magnetization rates as high as 105 T/s to 107 T/s. After a review of the magnetic properties of materials and the different types of magnetic behaviour, this paper deals with metallurgical aspects of magnetism. The influence of the metallurgy and metalworking processes of materials on their microstructure and magnetic properties is studied for different categories of soft magnetic materials relevant for accelerator technology. Their metallurgy is extensively treated. Innovative materials such as iron powder core materials, amorphous and nanocrystalline materials are also studied. A section considers the measurement, both destructive and non-destructive, of magnetic properties. Finally, a section discusses magnetic lag effects. 1 Magnetic properties of materials: types of magnetic behaviour The sense of the word ‘lodestone’ (waystone) as magnetic oxide of iron (magnetite, Fe3O4) is from 1515, while the old name ‘lodestar’ for the pole star, as the star leading the way in navigation, is from 1374.
    [Show full text]
  • Electro-Infiltrated Nickel/Iron-Oxide and Permalloy/Iron-Oxide Nanocomposites for Integrated Power Inductors
    Journal of Magnetism and Magnetic Materials 493 (2020) 165718 Contents lists available at ScienceDirect Journal of Magnetism and Magnetic Materials journal homepage: www.elsevier.com/locate/jmmm Research articles Electro-infiltrated nickel/iron-oxide and permalloy/iron-oxide nanocomposites for integrated power inductors T ⁎ Connor S. Smitha, , Shehaab Savliwalab, Sara C. Millsc, Jennifer S. Andrewc, Carlos Rinaldib,d, David P. Arnolda a Department of Electrical and Computer Engineering, Gainesville, FL 32611, USA b Department of Chemical Engineering, Gainesville, FL 32611, USA c Department of Material Science and Engineering, Gainesville, FL 32611, USA d J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL 32611, USA ARTICLE INFO ABSTRACT Keywords: Magnetic nanocomposite materials are of interest for applications including power inductors and transformers, Soft magnetic materials where a combined large bandwidth, low loss, and relatively high permeability are desired. This work demon- Electroplating strates the fabrication of nickel/iron-oxide nanocomposites, up to ~3 μm thick, and permalloy/iron-oxide na- Magnetic nanocomposites nocomposites, up to ~1 μm thick, using an electro-infiltration process, whereby the voids in an iron-oxide na- Magnetic nanoparticles noparticle film are filled with electroplated metal. Measurements show that the magnetic nanocomposites Power electronics exhibit hybrid magnetic properties: modestly high permeability and saturation attributed to the metal matrix phase, but with an increased bandwidth attributed to the iron-oxide inclusion phase. At 10 MHz, the nickel/iron- oxide nanocomposite material exhibits a relative permeability of ~23, with a loss tangent around 0.1; the permalloy/iron-oxide nanocomposite exhibits a relative permeability of ~136, with a loss tangent around 0.15.
    [Show full text]
  • Oliver Ellsworth Buckley
    NATIONAL ACADEMY OF SCIENCES O L I V E R E L L S W ORTH BUCKLEY 1887—1959 A Biographical Memoir by M E R V I N J . K ELLY Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1964 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. OLIVER ELLSWORTH BUCKLEY August 8,1887—December 14, BY MERVIN J. KELLY UCKLEY was an industrial research pioneer. He was among B the first ten scientists trained to the doctoral level who became members of the research organization of the Bell System. He en- tered the research branch of the Western Electric Company—the forerunner of Bell Telephone Laboratories—in New York City in 1914, immediately after completion of his doctoral work in physics at Cornell. Except for a short period of military service (1917-1918), he served continuously in the Bell System research organization—first with Western Electric Company and after 1925 with Bell Telephone Lab- oratories—until his retirement in 1952. During these thirty-eight years he made many outstanding individual and leadership contribu- tions to communications science and technology. Quite early in his career he was given research and engineering leadership responsi- bilities that expanded in scope with time. In his later years he served as president (1940-1950) and as chairman of the board (1951-1952) of these great Laboratories, the largest integrated industrial research organization in our country. His leadership and later executive responsibilities did not preclude his participation in and influence on the research and development programs.
    [Show full text]
  • 1 Magnetoresistive
    MAGNETORESISTIVE (MR) HEADS AND THE EARLIEST MR HEAD-BASED DISK DRIVES: SAWMILL AND CORSAIR Christopher H. Bajorek, Storage Special Interest Group Computer History Museum, Mountain View, CA Why it is Important Hard disk drives (HDDs) have survived as the information storage device of choice because of the sustained and steep advances achieved in storage density. Density advances required downward scaling of key components. The resulting smaller head-disk spacing and reduced magnetic fields from the disk were the key technology challenges. The reduction in the size of stored bits caused signal amplitude reductions which necessitated the invention of more powerful detectors. Magnetoresistive (MR) heads were the successful answer. These new film heads, together with new film disks, provided successful components for future HDDs up to the present time. They solved the joint challenge of ultra small signals and ever-reduced spacing between heads and disks. Since 1990, this combination improved data density, with concomitant cost per bit reductions, by approximately 10,000 times. Two companies led the industry in independently developing MR heads, IBM and HP. IBM was first to market in 1990. HP was second in 1994. Seagate also benefited from the HP heads since 1995. The rest of the industry started using MR heads in 1996. Magnetoresistive (MR) Heads Prior to 1990, all hard disk drives used the same inductive head for reading and writing. The readback signal amplitude from an inductive head is proportional to the magnetic flux captured from a stored bit, the number of turns of wire wrapped on the head, and to the velocity at which the head flies on the disk.
    [Show full text]
  • The Magnetic, Electrical and Structural Properties of Copper-Permalloy Alloys
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Kirill Belashchenko Publications Research Papers in Physics and Astronomy 6-2017 The am gnetic, electrical and structural properties of copper-permalloy alloys Makram A. Qader Arizona State University A. Vishina Kings College London Lei Yu Arizona State University Cougar Garcia Arizona State University Rakesh K. Singh Kurukshetra University See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/physicsbelashchenko Part of the Engineering Physics Commons, and the Metallurgy Commons Qader, Makram A.; Vishina, A.; Yu, Lei; Garcia, Cougar; Singh, Rakesh K.; Rizzo, Nicholas D.; Huang, Mengchu; Chamberlin, Ralph; Belashchenko, Kirill; van Schilfgaarde, Mark; and Newman, N., "The am gnetic, electrical and structural properties of copper- permalloy alloys" (2017). Kirill Belashchenko Publications. 31. http://digitalcommons.unl.edu/physicsbelashchenko/31 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Kirill Belashchenko Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Makram A. Qader, A. Vishina, Lei Yu, Cougar Garcia, Rakesh K. Singh, Nicholas D. Rizzo, Mengchu Huang, Ralph Chamberlin, Kirill Belashchenko, Mark van Schilfgaarde, and N. Newman This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/physicsbelashchenko/ 31 Qader et al. in J. Mag. Mag. Mat 442 (2017) 1 Published in Journal of Magnetism and Magnetic Materials 442 (2017), pp 45–52.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Compact Magnetic
    UNIVERSITY OF CALIFORNIA Los Angeles Compact Magnetic Shielding Using Thick-Film Electroplated Permalloy A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering by Jimmy Chen-Yen Wu 2020 © Copyright by Jimmy Chen-Yen Wu 2020 ABSTRACT OF THE DISSERTATION Compact Magnetic Shielding Using Thick-Film Electroplated Permalloy by Jimmy Chen-Yen Wu Doctor of Philosophy in Electrical and Computer Engineering University of California, Los Angeles, 2020 Professor Robert N. Candler, Chair Compact integration of clocks and inertial sensors using atomic, molecular, and optical (AMO) technology is necessary to create a self-contained navigation system resistant to external interference. However, the trend in miniaturization of AMO systems places the magnetic field of particle traps, optical isolators, and vacuum pumps close to other system components. Stray fields and field fluctuations cause changes in atomic transition frequencies, raising the noise floor and reducing the valuable stability in these precision devices. Therefore, it is critical to shield these magnetic fields away from sensitive subsystems by shunting them through low reluctance paths. This is accomplished with high permeability magnetic materials which either surround the precision components or the source of the magnetic field itself. Current magnetic shields are conventionally machined single or multi-layer structures made of various iron alloys. At smaller size scales, these manufacturing methods are ineffective at accommodating the various device and interconnect shapes, making multi-system integration challenging. This work demonstrates batch fabricated high permeability magnetic shielding using permalloy electroplating techniques to simultaneously push the limits of minimum size, maximum shielding factor, and minimum cost.
    [Show full text]
  • Magnetic Shield in FRIB
    Magnetic Shield in FRIB K. Saito MSU/FRIB SRF Development Manager This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics. Story of FRIB Magnetic Shielding Solved the coupled issue between magnetic shield and solenoid package design Local magnetic shield Magnetic Shield Design Constraints Fringe field • Local magnetic shield (given) from solenoid - Remnant field inside shield: < 15mG (given) - Exposed temperature ?, • Solenoid nearby cavities (Interface is already fixed, shield surface at 39cm from a 50cm solenoid) - Allowed solenoid fringe field strength on the magnetic outer surface ? 39cm (1) Experiment (2) Experiment Results (3) Experiments of Temperature • Proof of local • Local magnetic shield is exposed Dependence of Permeability (µ) and magnetic shield 25 – 30K Field Penetration design concept • Allowed magnetic field strength • PC-permalloy µ ~ 10000 at 20K@500mG inside shield when cavity • The fringe field strength on the shield quenched : 1G (QO of 0.53 HWR surface must be smaller than the fringe at 2K drops <10% by the flux trap) field of 300G to suppress the penetration field into the shield < 1G Solenoid Package Design • Fringe field strength < 300G on the shield surface 39cm away from the 50cm solenoid center Magnetic Shield Design • µ = 9000, 1mm (QWRs) and 2.2mm (HWRs ) thick K. Saito, Slide 2 • Inside remnant field <15mG Successful Local Magnetic Shield Validation with ReA6-1 CM Bunker Test .
    [Show full text]
  • Additive Manufacturing of Magnetic Shielding and Ultra
    www.nature.com/scientificreports OPEN Additive manufacturing of magnetic shielding and ultra- high vacuum fange for cold atom Received: 1 November 2017 Accepted: 12 January 2018 sensors Published: xx xx xxxx Jamie Vovrosh 1, Georgios Voulazeris 1,3, Plamen G. Petrov 1, Ji Zou2, Youssef Gaber2, Laura Benn3, David Woolger3, Moataz M. Attallah 2, Vincent Boyer1, Kai Bongs1 & Michael Holynski1 Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological performance. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique relevant to the manufacture of quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of 5 ± 0.5 × 10−10 mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity. Quantum technologies utilising atom clouds are highly promising tools for creating ever more sensitive devices with applications in a vast array of areas ranging from geophysical type applications1,2 to satellite independent navigation3.
    [Show full text]