MACHINE LEARNING METHODS to UNDERSTAND TEXTUAL DATA by Sahar Sohangir

Total Page:16

File Type:pdf, Size:1020Kb

MACHINE LEARNING METHODS to UNDERSTAND TEXTUAL DATA by Sahar Sohangir MACHINE LEARNING METHODS TO UNDERSTAND TEXTUAL DATA by Sahar Sohangir A Dissertation Submitted to the Faculty of The College of Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL December 2018 Copyright 2018 by Sahar Sohangir ii iii ACKNOWLEDGEMENTS I want to thank my advisor Dr. Dingding Wang. It has been an honor to be her first Ph.D. student. I appreciate all her contributions of time, ideas, and support to make my Ph.D. I also gratefully acknowledge partial support by the National Science Founda- tion, under grant number CNS-1427536. Any opinions, findings, and conclusions or recommendations expressed in this dissertation are those of the author and do not necessarily reflect the views of the National Science Foundation. I would like to thank my family for all their love and encouragement. iv ABSTRACT Author: Sahar Sohangir Title: Machine Learning Methods to Understand Textual Data Institution: Florida Atlantic University Dissertation Advisor: Dr. Dingding Wang Degree: Doctor of Philosophy Year: 2018 The amount of textual data that produce every minute on the internet is ex- tremely high. Processing of this tremendous volume of mostly unstructured data is not a straightforward function. But the enormous amount of useful information that lay down on them motivate scientists to investigate efficient and effective techniques and algorithms to discover meaningful patterns. Social network applications provide opportunities for people around the world to be in contact and share their valuable knowledge, such as chat, comments, and discussion boards. People usually do not care about spelling and accurate grammatical construction of a sentence in everyday life conversations. Therefore, extracting information from such datasets are more complicated. Text mining can be a solution to this problem. Text mining is a knowl- edge discovery process used to extract patterns from natural language. Application of text mining techniques on social networking websites can reveal a significant amount of information. Text mining in conjunction with social networks can be used for find- ing a general opinion about any special subject, human thinking patterns, and group identification. In this study, we investigate machine learning methods in textual data in six chapters. v 1. Text representation and encoding: This chapter will take a look at some techniques to represent documents in vector space and some machine learning methods to analyze textual data. 2. Text Similarity: In this chapter, we will propose a new similarity measure- ment. This new similarity can alleviate the Cosine similarity problem in high dimensional data. 3. Textual Data: Natural language processing and information retrieval tech- niques include sentiment analysis will investigate in this chapter. Lexicon based and machine learning base are two commonly used techniques in sentiment anal- ysis. 4. Lexicon Based Financial Sentiment Analysis: In this chapter lexicon based methods will use to extract sentiment of people in a financial forum. In this chapter We will investigate if people who are Bullish (believe the stock price will be increase) use positive words and people who are Bearish (believe the stock price will be decrease) use negative words in their sentences. 5. Financial Sentiment Analysis: Investigate deep learning methods to extract the sentiment of users in the financial forum. Based on our results Convolution Neural Network is the best method to extract user sentiment in the financial forum. 6. Expert Recognition in Social Media: The main goal of this chapter is to evaluate deep learning methods to find expert people in predicting stock price movement. In other words, we will try to see if there is any relation between people words and their ability in predicting stock price. vi To the graduate students of Florida Atlantic University. MACHINE LEARNING METHODS TO UNDERSTAND TEXTUAL DATA List of Figures ............................. xi 1 Introduction and background ..................... 1 1.1 Vector Space Model............................1 1.2 Text Preprocessing............................1 1.2.1 Tokenization............................2 1.2.2 Dropping common terms.....................2 1.2.3 Equivalence classing of terms (Normalization).........3 1.2.4 Capitalization...........................3 1.2.5 Stemming and lemmatization..................4 1.2.6 Term scoring...........................4 1.3 Learning Methods.............................6 1.3.1 supervised learning methods:..................6 1.3.2 Supervised learning evaluation metrics:............ 10 1.3.3 Unsupervised learning methods:................ 14 1.3.4 Unsupervised learning evaluation metrics:........... 21 1.3.5 Semi-supervised learning methods:............... 24 1.4 Brief revision of the dissertation..................... 24 2 Text Similarity ............................. 26 2.1 Text Similarity Measurement...................... 26 2.2 Cosine Similarity............................. 29 2.3 Sqrt-Cosine Similarity.......................... 30 viii 2.4 ISC Similarity............................... 32 2.5 Experiment................................ 33 2.6 DataSets.................................. 33 2.7 Learners.................................. 35 2.8 Performance Metrics........................... 35 2.9 Experimental results........................... 36 2.10 Overall Results.............................. 36 2.11 Results using Different Learners..................... 38 2.12 Results using Different datasets and Learners............. 40 2.13 Summary................................. 43 3 Textual Data .............................. 44 3.1 Text mining approaches......................... 44 3.2 Information Retrieval........................... 44 3.3 Natural Language Processing...................... 45 3.3.1 Text summarization....................... 48 3.3.2 Sentiment analysis........................ 49 4 Lexicon Based Financial Sentiment Analysis . 52 4.1 Why Financial Sentiment Analysis................... 52 4.2 previous work on Financial Sentiment Analysis............. 53 4.3 Methodology............................... 54 4.3.1 VADER: Valence Aware Dictionary for sEntiment Reasoning. 55 4.3.2 SentiWordNet........................... 56 4.4 Experiments................................ 56 4.4.1 Machine Learning Approaches.................. 57 4.4.2 Lexicon Based Approaches.................... 58 4.4.3 Combined Results......................... 59 4.5 Summary................................. 60 ix 5 Financial Sentiment Analysis ..................... 62 5.1 Social network information extraction.................. 62 5.2 Big Data.................................. 63 5.3 Machine Learning in Social network information extraction...... 66 5.4 Methodology............................... 69 5.4.1 Sentiment Analysis with Data Mining Approaches....... 70 5.4.2 Increase Accuracy by using Feature selection.......... 71 5.4.3 Deep Learning in Big Data Analytics.............. 77 5.4.4 Sentiment Analysis with Deep Learning Approaches...... 79 5.4.5 Results and Discussion...................... 85 5.5 Summary................................. 89 6 Expert Recognition in Social Media . 92 6.1 How can we find the experts in Social Media?............. 92 6.2 Previous work in finding Experts in Social Media........... 94 6.3 Methodology............................... 95 6.3.1 Expert Recognition with Data Mining Approach........ 95 6.3.2 Experiments Using Neural Networks.............. 96 6.4 Summary................................. 99 7 Summary and future work . 100 7.1 Future Works............................... 106 Bibliography .............................. 107 x LIST OF FIGURES 2.1 Accuracy in classification box plot.................... 38 2.2 Purity in clustering box plot....................... 38 4.1 Comparative Area Under the ROC curve for Lexicon versus Machine Learning based sentiment analysis.................... 60 5.1 Receiver Operating Characteristic for Logistic Regression....... 71 5.2 Accuracy of logistic regression by using feature selection methods.. 76 5.3 Distributed Memory Architecture.................... 82 5.4 Distributed Bag of words......................... 82 5.5 Area Under the ROC curve for doc2vec with window size of 5 and 10 86 5.6 Area Under the ROC curve for Long Short-Term Memory...... 88 5.7 Compare Area Under the ROC curve for Convolutional Neural Network in various steps.............................. 90 6.1 logistic regression (Area Under the ROC curve)............ 96 6.2 Area Under the ROC curve for window size of 5............ 96 6.3 Compare Area Under the ROC curve for Convolutional Neural Network in different steps............................. 99 xi CHAPTER 1 INTRODUCTION AND BACKGROUND The most common way to represent a document is bag of words (BOW) [1,2]. Bag of words model views a document as a collection of words and disregards grammar and word order. This representation leads to a vector representation which facilitates further analysis of the documents. For instance by representing a document as a vector, dot product of the vectors can be used to measure the similarity between documents. This chapter will take a look at some preprocessing techniques that we need to apply on text dataset. Also, we will see some common machine learning methods to extract information from textual data. 1.1 VECTOR SPACE MODEL Representing documents by the numerical vectors enable efficient analysis of the ex- tensive collection
Recommended publications
  • Sentence Boundary Detection for Handwritten Text Recognition Matthias Zimmermann
    Sentence Boundary Detection for Handwritten Text Recognition Matthias Zimmermann To cite this version: Matthias Zimmermann. Sentence Boundary Detection for Handwritten Text Recognition. Tenth International Workshop on Frontiers in Handwriting Recognition, Université de Rennes 1, Oct 2006, La Baule (France). inria-00103835 HAL Id: inria-00103835 https://hal.inria.fr/inria-00103835 Submitted on 5 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sentence Boundary Detection for Handwritten Text Recognition Matthias Zimmermann International Computer Science Institute Berkeley, CA 94704, USA [email protected] Abstract 1) The summonses say they are ” likely to persevere in such In the larger context of handwritten text recognition sys- unlawful conduct . ” <s> They ... tems many natural language processing techniques can 2) ” It comes at a bad time , ” said Ormston . <s> ”A singularly bad time ... potentially be applied to the output of such systems. How- ever, these techniques often assume that the input is seg- mented into meaningful units, such as sentences. This pa- Figure 1. Typical ambiguity for the position of a sen- per investigates the use of hidden-event language mod- tence boundary token <s> in the context of a period els and a maximum entropy based method for sentence followed by quotes.
    [Show full text]
  • Multiple Segmentations of Thai Sentences for Neural Machine Translation
    Proceedings of the 1st Joint SLTU and CCURL Workshop (SLTU-CCURL 2020), pages 240–244 Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020 c European Language Resources Association (ELRA), licensed under CC-BY-NC Multiple Segmentations of Thai Sentences for Neural Machine Translation Alberto Poncelas1, Wichaya Pidchamook2, Chao-Hong Liu3, James Hadley4, Andy Way1 1ADAPT Centre, School of Computing, Dublin City University, Ireland 2SALIS, Dublin City University, Ireland 3Iconic Translation Machines 4Trinity Centre for Literary and Cultural Translation, Trinity College Dublin, Ireland {alberto.poncelas, andy.way}@adaptcentre.ie [email protected], [email protected], [email protected] Abstract Thai is a low-resource language, so it is often the case that data is not available in sufficient quantities to train an Neural Machine Translation (NMT) model which perform to a high level of quality. In addition, the Thai script does not use white spaces to delimit the boundaries between words, which adds more complexity when building sequence to sequence models. In this work, we explore how to augment a set of English–Thai parallel data by replicating sentence-pairs with different word segmentation methods on Thai, as training data for NMT model training. Using different merge operations of Byte Pair Encoding, different segmentations of Thai sentences can be obtained. The experiments show that combining these datasets, performance is improved for NMT models trained with a dataset that has been split using a supervised splitting tool. Keywords: Machine Translation, Word Segmentation, Thai Language In Machine Translation (MT), low-resource languages are 1. Combination of Segmented Texts especially challenging as the amount of parallel data avail- As the encoder-decoder framework deals with a sequence able to train models may not be enough to achieve high of tokens, a way to address the Thai language is to split the translation quality.
    [Show full text]
  • A Clustering-Based Algorithm for Automatic Document Separation
    A Clustering-Based Algorithm for Automatic Document Separation Kevyn Collins-Thompson Radoslav Nickolov School of Computer Science Microsoft Corporation Carnegie Mellon University 1 Microsoft Way 5000 Forbes Avenue Redmond, WA USA Pittsburgh, PA USA [email protected] [email protected] ABSTRACT For text, audio, video, and still images, a number of projects have addressed the problem of estimating inter-object similarity and the related problem of finding transition, or ‘segmentation’ points in a stream of objects of the same media type. There has been relatively little work in this area for document images, which are typically text-intensive and contain a mixture of layout, text-based, and image features. Beyond simple partitioning, the problem of clustering related page images is also important, especially for information retrieval problems such as document image searching and browsing. Motivated by this, we describe a model for estimating inter-page similarity in ordered collections of document images, based on a combination of text and layout features. The features are used as input to a discriminative classifier, whose output is used in a constrained clustering criterion. We do a task-based evaluation of our method by applying it the problem of automatic document separation during batch scanning. Using layout and page numbering features, our algorithm achieved a separation accuracy of 95.6% on the test collection. Keywords Document Separation, Image Similarity, Image Classification, Optical Character Recognition contiguous set of pages, but be scattered into several 1. INTRODUCTION disconnected, ordered subsets that we would like to recombine. Such scenarios are not uncommon when The problem of accurately determining similarity between scanning large volumes of paper: for example, one pages or documents arises in a number of settings when document may be accidentally inserted in the middle of building systems for managing document image another in the queue.
    [Show full text]
  • An Incremental Text Segmentation by Clustering Cohesion
    An Incremental Text Segmentation by Clustering Cohesion Raúl Abella Pérez and José Eladio Medina Pagola Advanced Technologies Application Centre (CENATAV), 7a #21812 e/ 218 y 222, Rpto. Siboney, Playa, C.P. 12200, Ciudad de la Habana, Cuba {rabella, jmedina} @cenatav.co.cu Abstract. This paper describes a new method, called IClustSeg, for linear text segmentation by topic using an incremental overlapped clustering algorithm. Incremental algorithms are able to process new objects as they are added to the collection and, according to the changes, to update the results using previous information. In our approach, we maintain a structure to get an incremental overlapped clustering. The results of the clustering algorithm, when processing a stream, are used any time text segmentation is required, using the clustering cohesion as the criteria for segmenting by topic. We compare our proposal against the best known methods, outperforming significantly these algorithms. 1 Introduction Topic segmentation intends to identify the boundaries in a document with goal of capturing the latent topical structure. The automatic detection of appropriate subtopic boundaries in a document is a very useful task in text processing. For example, in information retrieval and in passages retrieval, to return documents, segments or passages closer to the user’s queries. Another application of topic segmentation is in summarization, where it can be used to select segments of texts containing the main ideas for the summary requested [6]. Many text segmentation methods by topics have been proposed recently. Usually, they obtain linear segmentations, where the output is a document divided into sequences of adjacent segments [7], [9].
    [Show full text]
  • A Text Denormalization Algorithm Producing Training Data for Text Segmentation
    A Text Denormalization Algorithm Producing Training Data for Text Segmentation Kilian Evang Valerio Basile University of Groningen University of Groningen [email protected] [email protected] Johan Bos University of Groningen [email protected] As a first step of processing, text often has to be split into sentences and tokens. We call this process segmentation. It is often desirable to replace rule-based segmentation tools with statistical ones that can learn from examples provided by human annotators who fix the machine's mistakes. Such a statistical segmentation system is presented in Evang et al. (2013). As training data, the system requires the original raw text as well as information about the boundaries between tokens and sentences within this raw text. Although raw as well as segmented versions of text corpora are available for many languages, this required information is often not trivial to obtain because the segmented version differs from the raw one also in other respects. For example, punctuation marks and diacritics have been normalized to canonical forms by human annotators or by rule-based segmentation and normalization tools. This is the case with e.g. the Penn Treebank, the Dutch Twente News Corpus and the Italian PAISA` corpus. This problem of missing alignment between raw and segmented text is also noted by Dridan and Oepen (2012). We present a heuristic algorithm that recovers the alignment and thereby produces standoff annotations marking token and sentence boundaries in the raw test. The algorithm is based on the Levenshtein algorithm and is general in that it does not assume any language-specific normalization conventions.
    [Show full text]
  • Topic Segmentation: Algorithms and Applications
    University of Pennsylvania ScholarlyCommons IRCS Technical Reports Series Institute for Research in Cognitive Science 8-1-1998 Topic Segmentation: Algorithms And Applications Jeffrey C. Reynar University of Pennsylvania Follow this and additional works at: https://repository.upenn.edu/ircs_reports Part of the Databases and Information Systems Commons Reynar, Jeffrey C., "Topic Segmentation: Algorithms And Applications" (1998). IRCS Technical Reports Series. 66. https://repository.upenn.edu/ircs_reports/66 University of Pennsylvania Institute for Research in Cognitive Science Technical Report No. IRCS-98-21. This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ircs_reports/66 For more information, please contact [email protected]. Topic Segmentation: Algorithms And Applications Abstract Most documents are aboutmore than one subject, but the majority of natural language processing algorithms and information retrieval techniques implicitly assume that every document has just one topic. The work described herein is about clues which mark shifts to new topics, algorithms for identifying topic boundaries and the uses of such boundaries once identified. A number of topic shift indicators have been proposed in the literature. We review these features, suggest several new ones and test most of them in implemented topic segmentation algorithms. Hints about topic boundaries include repetitions of character sequences, patterns of word and word n-gram repetition, word frequency, the presence of cue words and phrases and the use of synonyms. The algorithms we present use cues singly or in combination to identify topic shifts in several kinds of documents. One algorithm tracks compression performance, which is an indicator of topic shift because self-similarity within topic segments should be greater than between-segment similarity.
    [Show full text]
  • A Generic Neural Text Segmentation Model with Pointer Network
    Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18) SEGBOT: A Generic Neural Text Segmentation Model with Pointer Network Jing Li, Aixin Sun and Shafiq Joty School of Computer Science and Engineering, Nanyang Technological University, Singapore [email protected], {axsun,srjoty}@ntu.edu.sg Abstract [A person]EDU [who never made a mistake]EDU [never tried any- thing new]EDU Text segmentation is a fundamental task in natu- ral language processing that comes in two levels of Figure 1: A sentence with three elementary discourse units (EDUs). granularity: (i) segmenting a document into a se- and Thompson, 1988]. quence of topical segments (topic segmentation), Both topic and EDU segmentation tasks have received a and (ii) segmenting a sentence into a sequence of lot of attention in the past due to their utility in many NLP elementary discourse units (EDU segmentation). tasks. Although related, these two tasks have been addressed Traditional solutions to the two tasks heavily rely separately with different sets of approaches. Both supervised on carefully designed features. The recently propo- and unsupervised methods have been proposed for topic seg- sed neural models do not need manual feature en- mentation. Unsupervised topic segmentation models exploit gineering, but they either suffer from sparse boun- the strong correlation between topic and lexical usage, and dary tags or they cannot well handle the issue of can be broadly categorized into two classes: similarity-based variable size output vocabulary. We propose a ge- models and probabilistic generative models. The similarity- neric end-to-end segmentation model called SEG- based models are based on the key intuition that sentences BOT.SEGBOT uses a bidirectional recurrent neural in a segment are more similar to each other than to senten- network to encode input text sequence.
    [Show full text]
  • Text Segmentation Techniques: a Critical Review
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sunway Institutional Repository Text Segmentation Techniques: A Critical Review Irina Pak and Phoey Lee Teh Department of Computing and Information Systems, Sunway University, Bandar Sunway, Malaysia [email protected], [email protected] Abstract Text segmentation is widely used for processing text. It is a method of splitting a document into smaller parts, which is usually called segments. Each segment has its relevant meaning. Those segments categorized as word, sentence, topic, phrase or any information unit depending on the task of the text analysis. This study presents various reasons of usage of text segmentation for different analyzing approaches. We categorized the types of documents and languages used. The main contribution of this study includes a summarization of 50 research papers and an illustration of past decade (January 2007- January 2017)’s of research that applied text segmentation as their main approach for analysing text. Results revealed the popularity of using text segmentation in different languages. Besides that, the “word” seems to be the most practical and usable segment, as it is the smaller unit than the phrase, sentence or line. 1 Introduction Text segmentation is process of extracting coherent blocks of text [1]. The segment referred as “segment boundary” [2] or passage [3]. Another two studies referred segment as subtopic [4] and region of interest [5]. There are many reasons why the splitting document can be useful for text analysis. One of the main reasons is because they are smaller and more coherent than whole documents [3].
    [Show full text]
  • Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model
    Soft Similarity and Soft Cosine Measure: Similarity of Features in Vector Space Model Grigori Sidorov1, Alexander Gelbukh1, Helena Gomez-Adorno1, and David Pinto2 1 Centro de Investigacion en Computacion, Instituto Politecnico Nacional, Mexico D.F., Mexico 2 Facultad de Ciencias de la Computacion, Benemerita Universidad Autonoma de Puebla, Puebla, Mexico {sidorov,gelbukh}@cic.ipn.mx, [email protected], [email protected] Abstract. We show how to consider similarity between 1 Introduction features for calculation of similarity of objects in the Vec­ tor Space Model (VSM) for machine learning algorithms Computation of similarity of specific objects is a basic and other classes of methods that involve similarity be­ task of many methods applied in various problems in tween objects. Unlike LSA, we assume that similarity natural language processing and many other fields. In between features is known (say, from a synonym dictio­ natural language processing, text similarity plays crucial nary) and does not need to be learned from the data. role in many tasks from plagiarism detection [18] and We call the proposed similarity measure soft similarity. question answering [3] to sentiment analysis [14-16]. Similarity between features is common, for example, in The most common manner to represent objects is natural language processing: words, n-grams, or syn­ the Vector Space Model (VSM) [17]. In this model, the tactic n-grams can be somewhat different (which makes objects are represented as vectors of values of features. them different features) but still have much in common: The features characterize each object and have numeric for example, words “play” and “game” are different but values.
    [Show full text]
  • Evaluating Vector-Space Models of Word Representation, Or, the Unreasonable Effectiveness of Counting Words Near Other Words
    Evaluating Vector-Space Models of Word Representation, or, The Unreasonable Effectiveness of Counting Words Near Other Words Aida Nematzadeh, Stephan C. Meylan, and Thomas L. Griffiths University of California, Berkeley fnematzadeh, smeylan, tom griffi[email protected] Abstract angle between word vectors (e.g., Mikolov et al., 2013b; Pen- nington et al., 2014). Vector-space models of semantics represent words as continuously-valued vectors and measure similarity based on In this paper, we examine whether these constraints im- the distance or angle between those vectors. Such representa- ply that Word2Vec and GloVe representations suffer from the tions have become increasingly popular due to the recent de- same difficulty as previous vector-space models in capturing velopment of methods that allow them to be efficiently esti- mated from very large amounts of data. However, the idea human similarity judgments. To this end, we evaluate these of relating similarity to distance in a spatial representation representations on a set of tasks adopted from Griffiths et al. has been criticized by cognitive scientists, as human similar- (2007) in which the authors showed that the representations ity judgments have many properties that are inconsistent with the geometric constraints that a distance metric must obey. We learned by another well-known vector-space model, Latent show that two popular vector-space models, Word2Vec and Semantic Analysis (Landauer and Dumais, 1997), were in- GloVe, are unable to capture certain critical aspects of human consistent with patterns of semantic similarity demonstrated word association data as a consequence of these constraints. However, a probabilistic topic model estimated from a rela- in human word association data.
    [Show full text]
  • Text Segmentation Based on Semantic Word Embeddings
    Text Segmentation based on Semantic Word Embeddings Alexander A Alemi Paul Ginsparg Dept of Physics Depts of Physics and Information Science Cornell University Cornell University [email protected] [email protected] ABSTRACT early algorithm in this class was Choi's C99 algorithm [3] We explore the use of semantic word embeddings [14, 16, in 2000, which also introduced a benchmark segmentation 12] in text segmentation algorithms, including the C99 seg- dataset used by subsequent work. Instead of looking only at nearest neighbor coherence, the C99 algorithm computes mentation algorithm [3, 4] and new algorithms inspired by 1 the distributed word vector representation. By developing a coherence score between all pairs of elements of text, a general framework for discussing a class of segmentation and searches for a text segmentation that optimizes an ob- objectives, we study the effectiveness of greedy versus ex- jective based on that scoring by greedily making a succes- act optimization approaches and suggest a new iterative re- sion of best cuts. Later work by Choi and collaborators finement technique for improving the performance of greedy [4] used distributed representations of words rather than a strategies. We compare our results to known benchmarks bag of words approach, with the representations generated [18, 15, 3, 4], using known metrics [2, 17]. We demonstrate by LSA [8]. In 2001, Utiyama and Ishahara introduced a state-of-the-art performance for an untrained method with statistical model for segmentation and optimized a poste- our Content Vector Segmentation (CVS) on the Choi test rior for the segment boundaries. Moving beyond the greedy set.
    [Show full text]
  • Steps Involved in Text Recognition and Recent Research in OCR; a Study
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-1, May 2019 Steps Involved in Text Recognition and Recent Research in OCR; A Study K.Karthick, K.B.Ravindrakumar, R.Francis, S.Ilankannan Abstract: The Optical Character Recognition (OCR) is one of Preprocessing the automatic identification techniques that fulfill the automation Feature Extraction needs in various applications. A machine can read the Recognition information present in natural scenes or other materials in any Post processing form with OCR. The typed and printed character recognition is uncomplicated due to its well-defined size and shape. The In addition to the above steps segmentation and handwriting of individuals differs in the above aspects. So, the morphological processing also involved in the recognition handwritten OCR system faces complexity to learn this difference process. These steps may be added before the feature to recognize a character. In this paper, we discussed the various extraction process. stages in text recognition, handwritten OCR systems classification according to the text type, study on Chinese and II. PREPROCESSING Arabic text recognition as well as application oriented recent research in OCR. The preprocessing is a fundamental stage that is proceeding Index Terms: Edge detection, Optical Character Recognition, OCR, Preprocessing stages, Text Recognition to the stage of feature extraction; it regulates the appropriateness of the outcomes for the consecutive stages. I. INTRODUCTION The OCR success rate is contingent on the success percentage of each stage. The technologyadventfoundan amazing and noble development curve for the last two centuries. For the last A. Factors Affecting the Text Recognition Quality few decades, it is easy in using mouse and keyboard to assist as interfacing device between us and computer.
    [Show full text]