A Physiologic Approach to Hemodynamic Monitoring and Optimizing Oxygen Delivery in Shock Resuscitation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Central Venous Catheters Insertion – Assisting
Policies & Procedures Title:: CENTRAL VENOUS CATHETERS INSERTION – ASSISTING LPN / RN: Entry Level Competency I.D. Number: 1073 Authorization Source: Nursing Cross Index: [] Pharmacy Nursing Committee Date Revised: February 2018 [] MAC Motion #: Date Effective: March, 1997 [x] Former SHtnHR Nursing Practice Scope: SKtnHR Acute Care Committee Any PRINTED version of this document is only accurate up to the date of printing 13-May-19. Saskatoon Health Region (SHR) cannot guarantee the currency or accuracy of any printed policy. Always refer to the Policies and Procedures site for the most current versions of documents in effect. SHR accepts no responsibility for use of this material by any person or organization not associated with SHR. No part of this document may be reproduced in any form for publication without permission of SHR. HIGH ALERT: Central line-associated bloodstream infection (CLABSI) continues to be one of the most deadly and costly hospital-associated infections. – Institute for Healthcare Improvement DEFINITIONS Central Venous Catheter (CVC) - A venous access device whose tip dwells in a great vessel. Central Line Associated Blood Stream Infection (CLABSI)- is a primary blood stream infection (BSI) in a patient that had a central line within the 48-hour period before the development of a BSI and is not bloodstream related to an infection at another site. 1. PURPOSE 1.1 To minimize the risks of central line-associated bloodstream infections and other complications associated with the insertion of central venous catheters. 2. POLICY 2.1 This policy applies to insertion of all central venous catheters (CVCs). 2.2 All licensed staff assisting with the insertion of CVCs will be educated in CVC care and prevention of CLABSI. -
The Effect of Passive Leg Raising Towards Hemodynamics on Patient with Hypovolemic Shock at the Emergency Ward of Dustira Cimahi Hospital
International Seminar on Global Health (ISGH) 2017 Stikes Jenderal Achmad Yani Cimahi The Effect of Passive Leg Raising towards Hemodynamics on Patient with Hypovolemic Shock at the Emergency Ward of Dustira Cimahi Hospital Evangeline Hutabarat Nursing Science Dept., Stikes Jenderal Achmad Yani Cimahi Email: [email protected] Abstract One of the conditions needing immediate response in the emergency ward is hypovolemic shock. The patient in shock requires close monitoring for clinical signs and hemodynamic status and intravascular status. It is due to circulatory assistance and medication provision on the patient is given based on the accuracy of the intravascular volume status of the patient. Fluid responsiveness can be considered as basis for considering administering fluid only or inotropic and vasopressor medication for the patient to maintain her circulatory homeostatic. Passive Leg Raising (PLR) may be a reversible method to evaluate fluid responsiveness. The study aims at evaluating the effect of PLR on hemodynamic. It employs the quasi-experimental design with the within subject repeated measurement design approach. 48 respondents took part as samples, with the consecutive sampling method implemented. The samples were then categorized into responsive and non-responsive groups based on the increase of pulse pressure amounting to or beyond 9% during PLR implementation. The data was tested using the dependent and independent t test to provide analysis for uni-variate and bivariate data. The results indicated that 34 respondents belonged to the responsive group while 14 respondents were categorized as non-responsive. There was a significant relationship between PLR and hemodynamic parameters of systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure (p>0.05). -
Radionuclear Measurement of Peripheral Hemodynamics In
RadionuclearMeasurementof Peripheral Hemodynamics in Selection of Vasodilators for Treatment of Heart Failure Yasuhiro Todo, Mitsumasa Ohyanagi, Ryu Fujisue, and Tadaaki Iwasaki Hyogo College ofMedicine, Nishinomiya, Japan Inorder to select the optimal vasodilator for the treatment of patients with congestive heart failure (CHF), the acute effects of three vasodilators (isosorbide dinitrate (ISDN) 5 mg, nifedipine 10 mg, and prazosin 1 mg) on peripheral capacitance and resistance vessels (CV and RV)were evaluated by a newly devised radionuclear technique (Study 1).Thirty-six @ patients with chronic CHF were dividedinto Group A (ejectionfraction (EF) 35%, n = 20, mean EF: 47.2 ±6.5%) and B (EF < 35%, n = 16, mean EF: 24.8 ±7.1%). ISDNproduced the strongest CVdilatation(25% in both groups). Nifedipinereduced RVtone in Groups A and B (14% and 27%, respectively),and CVtone in Group A (6%). Prazosin had the most prominent effects on both vessels in Group B. From these results, it appeared: (a) ISDN is indicated for the cases with increased CV tone, (b) nifedipine is suitable for those with @ increased RV tone, (C)in cases of increased tone in both vessels, nifedipine (when EF 35%) or prazosin (when EF < 35%) is optimal.To evaluate the validityof this assignment, 49 subjects with CHF were divided into Group 1 (n = 16, increased CV tone), Group 2 (n = 17, increased RV tone), and Group 3 (n = 16, increased CV and RV tone) in Study 2. In Group 1, the changes of all indexes were not significantly different between the subjects treated with optimal drug based on the assignment (subgroup P) and those with a non-optimaldrug (subgroup N)after 2 wk of therapy. -
59 Arterial Catheter Insertion (Assist), Care, and Removal 509
PROCEDURE Arterial Catheter Insertion 59 (Assist), Care, and Removal Hillary Crumlett and Alex Johnson PURPOSE: Arterial catheters are used for continuous monitoring of blood pressure, assessment of cardiovascular effects of vasoactive drugs, and frequent arterial blood gas and laboratory sampling. In addition, arterial catheters provide access to blood samples that support the diagnostics related to oxygen, carbon dioxide, and bicarbonate levels (oxygenation, ventilation, and acid-base status). PREREQUISITE NURSING aortic valve closes, marking the end of ventricular systole. KNOWLEDGE The closure of the aortic valve produces a small rebound wave that creates a notch known as the dicrotic notch. The • Knowledge of the anatomy and physiology of the vascu- descending limb of the curve (diastolic downslope) repre- lature and adjacent structures is needed. sents diastole and is characterized by a long declining • Knowledge of the principles of hemodynamic monitoring pressure wave, during which the aortic wall recoils and is necessary. propels blood into the arterial network. The diastolic pres- • Understanding of the principles of aseptic technique is sure is measured as the lowest point of the diastolic needed. downslope, which should be less than 80 mm Hg in • Conditions that warrant the use of arterial pressure moni- adults. 21 toring include patients with the following: • The difference between the systolic and diastolic pres- ❖ Frequent blood sampling: sures is the pulse pressure, with a normal value of about Respiratory conditions requiring arterial blood gas 40 mm Hg. monitoring (oxygenation, ventilation, acid-base • Arterial pressure is determined by the relationship between status) blood fl ow through the vessels (cardiac output) and the Bleeding, actual or potential resistance of the vessel walls (systemic vascular resis- Electrolyte or glycemic abnormalities, actual or tance). -
Fluid Resuscitation Therapy for Hemorrhagic Shock
CLINICAL CARE Fluid Resuscitation Therapy for Hemorrhagic Shock Joseph R. Spaniol vides a review of the 4 types of shock, the 4 classes of Amanda R. Knight, BA hemorrhagic shock, and the latest research on resuscita- tive fluid. The 4 types of shock are categorized into dis- Jessica L. Zebley, MS, RN tributive, obstructive, cardiogenic, and hemorrhagic Dawn Anderson, MS, RN shock. Hemorrhagic shock has been categorized into 4 Janet D. Pierce, DSN, ARNP, CCRN classes, and based on these classes, appropriate treatment can be planned. Crystalloids, colloids, dopamine, and blood products are all considered resuscitative fluid treat- ment options. Each individual case requires various resus- ■ ABSTRACT citative actions with different fluids. Healthcare Hemorrhagic shock is a severe life-threatening emergency professionals who are knowledgeable of the information affecting all organ systems of the body by depriving tissue in this review would be better prepared for patients who of sufficient oxygen and nutrients by decreasing cardiac are admitted with hemorrhagic shock, thus providing output. This article is a short review of the different types optimal care. of shock, followed by information specifically referring to hemorrhagic shock. The American College of Surgeons ■ DISTRIBUTIVE SHOCK categorized shock into 4 classes: (1) distributive; (2) Distributive shock is composed of 3 separate categories obstructive; (3) cardiogenic; and (4) hemorrhagic. based on their clinical outcome. Distributive shock can be Similarly, the classes of hemorrhagic shock are grouped categorized into (1) septic; (2) anaphylactic; and (3) neu- by signs and symptoms, amount of blood loss, and the rogenic shock. type of fluid replacement. This updated review is helpful to trauma nurses in understanding the various clinical Septic shock aspects of shock and the current recommendations for In accordance with the American College of Chest fluid resuscitation therapy following hemorrhagic shock. -
Reducing Arterial Catheters
Reducing the Risk of Catheter-Related Bloodstream Infections: Peripheral Arterial Catheters Amy Bardin Spencer, EdD(c), MS, RRT, VA-BC™ Manager, Clinical Marketing – Strategic Programs – Teleflex Russ Olmsted, MPH, CIC Director, Infection Prevention & Control, Trinity Health Paid consultant, Ethicon, BIOPATCH products Disclosure • This presentation reflects the technique, approaches and opinions of the individual presenters. This Ethicon sponsored presentation is not intended to be used as a training guide. The steps demonstrated may not be the complete steps of the procedure. Before using any medical device, review all relevant package inserts with particular attention to the indications, contraindications, warnings and precautions, and steps for use of the device(s). • Amy Bardin Spencer and Russ Olmsted are compensated by and presenting on behalf of Ethicon and must present information in accordance with applicable regulatory requirements. 0.8% of arterial lines become infected Maki DG et al., Mayo Clinic Proc 2006;81:1159-1171. Are You Placing Arterial Catheters? 16,438 per day 6,000,000 arterial catheters 680 every hour Maki DG et al., Mayo Clinic Proc 2006;81:1159-1171. 131 per day 48,000 arterial catheter-related bloodstream infections 5 patients every hour Maki DG et al., Mayo Clinic Proc 2006;81:1159-1171. Risk Factors • Lack of insertion compliance • No surveillance procedure • No bundle specific to arterial device insertion or maintenance • Multiple inserters with variations in skill set Maki DG et al., Mayo Clinic Proc 2006;81:1159-1171. -
100% NON-INVASIVE FLUID MANAGEMENT Proper Fluid Management May Improve Clinical Outcomes, Potentially Saving Millions in Operating Costs1,2
100% NON-INVASIVE FLUID MANAGEMENT Proper Fluid Management May Improve Clinical Outcomes, Potentially Saving Millions in Operating Costs1,2 The Starling fluid management monitoring system provides a full hemodynamic profile within seconds. The effect of fluids can be monitored at any time and treatment modified accordingly, across the continuum of care: ED > ICU > OR > RRT In a retrospective, matched, single-center study of nearly 200 patients, researchers from the University of Kansas Health System evaluated stroke volume (SV) guided resuscitation in 100 ICU patients with severe sepsis and septic shock and found1: Initiation of Acute % ICU Length of Stay -2.89 DAYS Dialysis Therapy -13.25 Save an estimated Risk of Mechanical % $14,498 per Ventilation -51 treated patient3 $14K Starling - Over 80% of hospitalized patients receive IV fluids.4 Yet studies show that giving too little or too much fluid can lead to serious complications and contribute to rising healthcare costs.5,6 - Studies also show that only ~50% of hemodynamically unstable patients will respond to IV fluid by increasing cardiac output and perfusion. Assessing whether fluid may help or harm a patient is a critical step in optimizing treatment.7 - Using only blood pressure, urine output and heart rate to measure fluid responsiveness may provide limited and inconclusive information.7 TAKE THE GUESSWORK OUT OF YOUR FLUID ASSESSMENT WITH STARLING - Provides a dynamic assessment of fluid responsiveness — accurately, precisely and 100% non-invasively. - Supports individualized fluid therapy without requiring an invasive arterial or central line, potentially reducing the risk of hospital-acquired infections and other complications.8 - Independently validated vs. -
Intubation Through a Laryngeal Mask Airway by Fiberoptic Bronchoscope in an Infant with a Mass at the Base of the Tongue − a Case Report −
대한마취과학회지 2008; 54: S 43~6 □ 영문논문 □ Korean J Anesthesiol Vol. 54, No. 3, March, 2008 Intubation through a Laryngeal Mask Airway by Fiberoptic Bronchoscope in an Infant with a Mass at the Base of the Tongue − A case report − Department of Anesthesiology and Pain Medicine, Anesthesiology and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea Ji Eun Kim, M.D., Chul Ho Chang, M.D., and Yong-Taek Nam, M.D. Failed or difficult tracheal intubation remains an important cause of mortality and morbidity during anesthesia, especially in infants with anatomical or pathological abnormalities of the airway. We report on a 4.1 kg, 85-day-male infant with a thyroglossal duct cyst at the tongue base who could not be conventionally ventilated and intubated in the supine position. The infant was intubated with a 3-mm endotracheal tube through the laryngeal mask airway (LMA) with guidance of a fiberoptic bronchoscope (FOB). However, the pilot balloon did not pass through the 1.5-mm LMA conduit. After cutting the pilot balloon, we removed the LMA and inserted a central venous catheter guide-wire through the endotracheal tube to increase the endotracheal tube to 3.5 mm. This maneuver allowed us to secure the airway without further problems. (Korean J Anesthesiol 2008; 54: S 43~6) Key Words: fiberoptic bronchoscope, infant, intubation, laryngeal mask airway, thyroglossal duct cyst. Failed or difficult tracheal intubation is an important cause conventional laryngoscopy.8) of mortality and morbidity during anesthesia.1-3) Difficulties are In the present report, we describe the successful intubation more frequent in pediatric patients because of their anatomical with LMA and FOB under the aid of central venous catheter variations.4) Tracheal intubation of infants with various anato- guide wire in a 4.1 kg, 85-day-male infant, who could not be mical and pathological abnormalities of the airway can be a conventionally ventilated and intubated. -
Arterial Line
Arterial Line An arterial line is a thin catheter inserted into an artery. Arterial line placement is a common procedure in various critical care settings. It is most commonly used in intensive care medicine and anesthesia to monitor blood pressure directly and in real time (rather than by intermittent and indirect measurement, like a blood pressure cuff) and to obtain samples for arterial blood gas analysis. There are specific insertion sites, trained personnel and procedures for arterial lines. There are also specific techniques for drawing a blood sample from an A-Line or arterial line. An arterial line is usually inserted into the radial artery in the wrist, but can also be inserted into the brachial artery at the elbow, into the femoral artery in the groin, into the dorsalis pedis artery in the foot, or into the ulnar artery in the wrist. In both adults and children, the most common site of cannulation is the radial artery, primarily because of the superficial nature of the vessel and the ease with which the site can be maintained. Additional advantages of radial artery cannulation include the consistency of the anatomy and the low rate of complications. After the radial artery, the femoral artery is the second most common site for arterial cannulation. One advantage of femoral artery cannulation is that the vessel is larger than the radial artery and has stronger pulsation. Additional advantages include decreased risk of thrombosis and of accidental catheter removal, though the overall complication rate remains comparable. There has been considerable debate over whether radial or femoral arterial line placement more accurately measures blood pressure and mean arterial pressure, however, both approaches seem to perform well for this function. -
The Nurses Group Poster Session
THE NURSES GROUP POSTER SESSION NP001 This abstract outlines the development and testing of an Family members’ experiences of different caring education program for family carers of individuals about to organizations during allogeneic hematopoietic stem cells undergo BMT. The project aimed to increase carer confidence transplantation - A qualitative interview study in supporting newly discharged blood and marrow transplant K. Bergkvist1,*, J. Larsen2, U.-B. Johansson1, J. Mattsson3, (BMT) recipients through an interactive education program. B. Fossum1 Method: Evaluation methodology was used to examine the 1 2 impact on carer confidence. Brief questionnaires to assess level Sophiahemmet University, Red Cross University College, fi 3Oncology and Pathology, Karolinska Institutet, Stockholm, of con dence were implemented pre- and post- each session; fi Sweden questions were speci c to the content of that session. Following completion of the program an overall evaluation Introduction: Home care after allogeneic hematopoietic stem survey was also completed. The education sessions were developed drawing on evidence from literature, unit specific cell transplantation (HSCT) has been an option for over ’ 15 years. Earlier studies have shown that home care is safe practice guidelines and the team s expertise. Carers of and has medical advantages. Because of the complex and individuals who were about to receive, or currently receiving intensive nature of the HSCT, most patients require a family BMT, were invited to attend the education program. member to assist them with their daily living. Today, there is a Completing the evaluation was not a program requirement. limited knowledge about family members’ experiences in Results: Up to 14 carers attended each session. -
Nitric Oxide, the Biological Mediator of the Decade: Fact Or Fiction?
Eur Respir J 1997; 10: 699–707 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10030699 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'CLINICAL PHYSIOLOGY IN RESPIRATORY INTENSIVE CARE' Edited by A. Rossi and C. Roussos Number 14 in this Series Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans. Unit of Critical Care, National Heart & ERS Journals Ltd 1997. Lung Institute, Royal Brompton Hospital, ABSTRACT: Nitric oxide (NO), an atmospheric gas and free radical, is also an London, UK. important biological mediator in animals and humans. Its enzymatic synthesis by constitutive (c) and inducible (i) isoforms of NO synthase (NOS) and its reactions Correspondence: T.W. Evans with other biological molecules such as reactive oxygen species are well charac- Royal Brompton Hospital Sydney Street terized. NO modulates pulmonary and systemic vascular tone through its vasodila- London SW3 6NP tor property. It has antithrombotic functions and mediates some consequences of UK the innate and acute inflammatory responses; cytokines and bacterial toxins induce widespread expression of iNOS associated with microvascular and haemodynam- Keywords: Acute respiratory distress syn- ic changes in sepsis. drome Within the lungs, a diminution of NO production is implicated in pathological hypoxic pulmonary vasoconstriction states associated with pulmonary hypertension, such as acute respiratory distress nitric oxide syndrome: inhaled NO is a selective pulmonary vasodilator and can improve ven- nitric oxide synthase tilation-perfusion mismatch. However, it may have deleterious effects through mod- pulmonary hypertension ulating hypoxic pulmonary vasoconstriction. -
Relationship Between Vasodilatation and Cerebral Blood Flow Increase in Impaired Hemodynamics: a PET Study with the Acetazolamide Test in Cerebrovascular Disease
CLINICAL INVESTIGATIONS Relationship Between Vasodilatation and Cerebral Blood Flow Increase in Impaired Hemodynamics: A PET Study with the Acetazolamide Test in Cerebrovascular Disease Hidehiko Okazawa, MD, PhD1,2; Hiroshi Yamauchi, MD, PhD1; Hiroshi Toyoda, MD, PhD1,2; Kanji Sugimoto, MS1; Yasuhisa Fujibayashi, PhD2; and Yoshiharu Yonekura, MD, PhD2 1PET Unit, Research Institute, Shiga Medical Center, Moriyama, Japan; and 2Biomedical Imaging Research Center, Fukui Medical University, Fukui, Japan Key Words: acetazolamide; cerebrovascular disease; cerebral The changes in cerebral blood flow (CBF) and arterial-to- blood volume; vasodilatory capacity; cerebral perfusion pressure capillary blood volume (V0) induced by acetazolamide (ACZ) are expected to be parallel each other in the normal circula- J Nucl Med 2003; 44:1875–1883 tion; however, it has not been proven that the same changes in those parameters are observed in patients with cerebro- vascular disease. To investigate the relationship between changes in CBF, vasodilatory capacity, and other hemody- namic parameters, the ACZ test was performed after an The ability of autoregulation to maintain the cerebral 15O-gas PET study. Methods: Twenty-two patients with uni- blood flow (CBF), which resides in the cerebral circulation lateral major cerebral arterial occlusive disease underwent despite transient changes in systemic mean arterial blood 15 PET scans using the H2 O bolus method with the ACZ test pressure, has been shown to occur via the mechanism of 15 after the O-gas steady-state method. CBF and V0 for each arteriolar vasodilatation in the cerebral circulation (1). The subject were calculated using the 3-weighted integral vasodilatory change in the cerebral arteries is assumed for method as well as the nonlinear least-squares fitting method.