A Physiologic Approach to Hemodynamic Monitoring and Optimizing Oxygen Delivery in Shock Resuscitation

Total Page:16

File Type:pdf, Size:1020Kb

A Physiologic Approach to Hemodynamic Monitoring and Optimizing Oxygen Delivery in Shock Resuscitation Journal of Clinical Medicine Review A Physiologic Approach to Hemodynamic Monitoring and Optimizing Oxygen Delivery in Shock Resuscitation Amy Russell 2, Emanuel P. Rivers 3,4, Paresh C. Giri 1, Anja K. Jaehne 3 and H. Bryant Nguyen 1,2,* 1 Division of Pulmonary, Critical Care, Hyperbaric, Allergy, and Sleep Medicine, Loma Linda University, Loma Linda, CA 92354, USA; [email protected] 2 Department of Emergency Medicine, Loma Linda University, Loma Linda, CA 92354, USA; [email protected] 3 Department of Emergency Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; [email protected] (E.P.R.); [email protected] (A.K.J.) 4 Surgical Critical Care, Henry Ford Hospital, Detroit, MI 48202, USA * Correspondence: [email protected]; Tel.: +1-909-558-4023 Received: 25 May 2020; Accepted: 27 June 2020; Published: 30 June 2020 Abstract: The approach to shock resuscitation focuses on all components of oxygen delivery, including preload, afterload, contractility, hemoglobin, and oxygen saturation. Resuscitation focused solely on preload and fluid responsiveness minimizes other key elements, resulting in suboptimal patient care. This review will provide a physiologic and practical approach for the optimization of oxygen delivery utilizing available hemodynamic monitoring technologies. Venous oxygen saturation (SvO2) and lactate will be discussed as indicators of shock states and endpoints of resuscitation within the framework of resolving oxygen deficit and oxygen debt. Keywords: shock; resuscitation; hemodynamic monitoring; fluid responsiveness; stroke volume; venous oxygen saturation; lactate; oxygen delivery 1. Introduction Circulatory shock is defined as inadequate oxygen delivery to meet metabolic and oxygen demands [1]. Mechanisms underlying this physiologic emergency are related to decreased cardiac output (CO) due to either decreased circulating volume (hypovolemic shock), obstruction of circulatory flow (obstructive shock), or impaired cardiac function (cardiogenic shock). A fourth recognized mechanism is based on the altered distribution of blood flow leading to perfusion failure (distributive shock). The occurring oxygen debt and tissue hypoperfusion, regardless of the underlying etiology of the shock, lead to cellular ischemia and injury and potentially to multi-organ dysfunction syndrome (MODS) and eventual death. By its definition, the goal in the treatment of shock is, therefore, to increase oxygen delivery (DO2) to meet oxygen demand in order to resolve the global tissue hypoperfusion. Oxygen delivery is determined by CO and blood oxygen content (CaO2) (Figure1). Therefore, resuscitation of shock at the bedside is dependent on optimizing the components of CO and CaO2: Preload, afterload, contractility, hemoglobin, and oxygen saturation. J. Clin. Med. 2020, 9, 2052; doi:10.3390/jcm9072052 www.mdpi.com/journal/jcm J. Clin. Med. 2020, 9, 2052 2 of 18 J. Clin. Med. 2020, 9, x FOR PEER REVIEW 2 of 18 Figure 1. Determinants of oxygen delivery (DO2). CO–Cardiac output; CaO2–Oxygen content; Figure 1. Determinants of oxygen delivery (DO2). CO–Cardiac output; CaO2–Oxygen content; Hgb– Hgb–Hemoglobin concentration; SaO2–Oxygen saturation; PaO2–Partial pressure of oxygen. Hemoglobin concentration; SaO2–Oxygen saturation; PaO2–Partial pressure of oxygen. Unfortunately, recent literature discussing shock resuscitation focuses only on preload, specifically fluidUnfortunately, responsiveness [2recent–4]. The literature passive legdiscussing raise (PLR) shock maneuver resuscitation has been popularized focuses only as a non-invasiveon preload, methodspecifically of simulating fluid responsiveness a fluid bolus [2–4]. due The to fears passive of administrating leg raise (PLR) anmaneuver actual bolus has been [5]. Additionally, popularized thereas a non-invasive has been much method debate of regardingsimulating what a fluid amounts bolus todue a fluidto fears bolus of administrating and what type an of fluidactual should bolus be[5]. used. Additionally, there has been much debate regarding what amounts to a fluid bolus and what type of fluidIn thisshould review, be used. we will provide the reader with a practical review on shock resuscitation beyond the fluidIn this bolus review, and assessmentwe will provide of fluid the responsiveness,reader with a practical discussing review the on physiologic shock resuscitation basis for variousbeyond bedsidethe fluid hemodynamic bolus and assessment monitoring of fluid tools responsive available toness, optimize discussing oxygen the delivery.physiologic While basis fundamental, for various webedside believe hemodynamic that these concepts monitoring are important tools available for clinicians to optimize to apply oxygen when delivery. facedwith While patients fundamental, having complexwe believe hemodynamic that these concepts presentations. are important We will for firstclinicians discuss to measurementsapply when faced of preloadwith patients as this having is the initialcomplex target hemodynamic of resuscitation. presentations. We then review We will the techniquesfirst discuss of measurements determining fluid of preload responsiveness as this basedis the oninitial the classicaltarget of Frank–Starling resuscitation. andWe Guytonthen review curves. the Optimizing techniques preload of determining thus requires fluid measuring responsiveness stroke volumebased on (SV) the and classical CO with Frank–Starling a number of available and Guyt technologies.on curves. OnceOptimizing preload preload is addressed, thus afterloadrequires andmeasuring contractility stroke are volume targeted. (SV) Finally, and CO the with resuscitation a number endpoints of available venous technologies. oxygen saturation Once preload (SvO 2is) andaddressed, lactate areafterload applied and to determine contractility if shock are persists,targeted. requiring Finally, further the resuscitation increased oxygen endpoints delivery venous with inotrope,oxygen saturation blood transfusion, (SvO2) and and lactate/or oxygen are applied supplementation to determine (e.g., if mechanical shock persists, ventilation requiring support). further increased oxygen delivery with inotrope, blood transfusion, and/or oxygen supplementation (e.g., 2.mechanical Measuring ventilation Preload support). 2.1.2. Measuring Left Ventricular Preload End-Diastolic Volume and Pressure Preload is the first target for the resolution of shock. Left ventricular end-diastolic volume (LVEDV) is2.1. the Left reference Ventricular standard End-Diastolic for the assessmentVolume and ofPressure preload. LVEDV can be measured or estimated using eitherPreload transthoracic is the echocardiographyfirst target for the (TTE) resolution or transesophageal of shock. Left echocardiography ventricular end-diastolic (TEE). The volume apical four-chamber(LVEDV) is the view reference visualizes standard the left ventricle.for the assessment The LVEDV of measurement preload. LVEDV is based can on be images measured obtained or inestimated end-diastole using corresponding either transthoracic with the echocardiogr R-wave on anaphy electrocardiogram. (TTE) or transesophageal LVEDV is calculated echocardiography based on (TEE). The apical four-chamber view visualizes the left ventricle. The LVEDV measurement is based on images obtained in end-diastole corresponding with the R-wave on an electrocardiogram. LVEDV J. Clin. Med. 2020, 9, 2052 3 of 18 J. Clin. Med. 2020, 9, x FOR PEER REVIEW 3 of 18 tracingis calculated the endocardium based on tracing at end-diastole the endocardium and applying at end-diastole a modified and Simpson’s applying rule a [modified6]. This assessment Simpson’s isrule user-dependent [6]. This assessment with respect is user to-dependent skill and appropriatewith respect image to skill acquisition. and appropriate Additionally, image acquisition. LVEDV is measuredAdditionally, at a singularLVEDV timeis measured point, not at addressing a singular the ti needme point, for serial not assessmentsaddressing requiredthe need to for evaluate serial responseassessments to interventions. required to evaluate Alternatively, response pressure to interventions. instead of Alternatively, volume is often pressure measured, instead which of volume has its ownis often set ofmeasured, limitations. which Left has ventricular its own end-diastolicset of limitations. pressure Left (LVEDP) ventricular measured end-diastolic by the leftpressure heart catheterization(LVEDP) measured can be by afalse the representationleft heart catheterizat of LVEDVion in can common be a false pathological representation states such of LVEDV as chronic in leftcommon heart failurepathological with low states compliance. such as chronic Compliance left he isart equal failure to thewith change low compliance. in volume dividedCompliance by the is changeequal to in the pressure change (C in= volumeDV/DP). divided With a decrease by the change in ventricular in pressure compliance (C = ΔV/ (stiΔffP).ening With of thea decrease ventricle) in seenventricular in left ventricularcompliance hypertrophy,(stiffening of thethe left ventricle) ventricular seen pressure in left ventricular can be elevated hypertrophy, in the presence the left ofventricular hypovolemia. pressure can be elevated in the presence of hypovolemia. 2.2.2.2. Pulmonary CapillaryCapillary WedgeWedge PressurePressure andand LeftLeft AtrialAtrial PressurePressure UsingUsing aa pulmonary pulmonary artery artery catheter catheter (PAC) (PAC) we can we measure can measure left atrial left pressure atrial (LAP)pressure via pulmonary(LAP) via capillarypulmonary
Recommended publications
  • Central Venous Catheters Insertion – Assisting
    Policies & Procedures Title:: CENTRAL VENOUS CATHETERS INSERTION – ASSISTING LPN / RN: Entry Level Competency I.D. Number: 1073 Authorization Source: Nursing Cross Index: [] Pharmacy Nursing Committee Date Revised: February 2018 [] MAC Motion #: Date Effective: March, 1997 [x] Former SHtnHR Nursing Practice Scope: SKtnHR Acute Care Committee Any PRINTED version of this document is only accurate up to the date of printing 13-May-19. Saskatoon Health Region (SHR) cannot guarantee the currency or accuracy of any printed policy. Always refer to the Policies and Procedures site for the most current versions of documents in effect. SHR accepts no responsibility for use of this material by any person or organization not associated with SHR. No part of this document may be reproduced in any form for publication without permission of SHR. HIGH ALERT: Central line-associated bloodstream infection (CLABSI) continues to be one of the most deadly and costly hospital-associated infections. – Institute for Healthcare Improvement DEFINITIONS Central Venous Catheter (CVC) - A venous access device whose tip dwells in a great vessel. Central Line Associated Blood Stream Infection (CLABSI)- is a primary blood stream infection (BSI) in a patient that had a central line within the 48-hour period before the development of a BSI and is not bloodstream related to an infection at another site. 1. PURPOSE 1.1 To minimize the risks of central line-associated bloodstream infections and other complications associated with the insertion of central venous catheters. 2. POLICY 2.1 This policy applies to insertion of all central venous catheters (CVCs). 2.2 All licensed staff assisting with the insertion of CVCs will be educated in CVC care and prevention of CLABSI.
    [Show full text]
  • The Effect of Passive Leg Raising Towards Hemodynamics on Patient with Hypovolemic Shock at the Emergency Ward of Dustira Cimahi Hospital
    International Seminar on Global Health (ISGH) 2017 Stikes Jenderal Achmad Yani Cimahi The Effect of Passive Leg Raising towards Hemodynamics on Patient with Hypovolemic Shock at the Emergency Ward of Dustira Cimahi Hospital Evangeline Hutabarat Nursing Science Dept., Stikes Jenderal Achmad Yani Cimahi Email: [email protected] Abstract One of the conditions needing immediate response in the emergency ward is hypovolemic shock. The patient in shock requires close monitoring for clinical signs and hemodynamic status and intravascular status. It is due to circulatory assistance and medication provision on the patient is given based on the accuracy of the intravascular volume status of the patient. Fluid responsiveness can be considered as basis for considering administering fluid only or inotropic and vasopressor medication for the patient to maintain her circulatory homeostatic. Passive Leg Raising (PLR) may be a reversible method to evaluate fluid responsiveness. The study aims at evaluating the effect of PLR on hemodynamic. It employs the quasi-experimental design with the within subject repeated measurement design approach. 48 respondents took part as samples, with the consecutive sampling method implemented. The samples were then categorized into responsive and non-responsive groups based on the increase of pulse pressure amounting to or beyond 9% during PLR implementation. The data was tested using the dependent and independent t test to provide analysis for uni-variate and bivariate data. The results indicated that 34 respondents belonged to the responsive group while 14 respondents were categorized as non-responsive. There was a significant relationship between PLR and hemodynamic parameters of systolic blood pressure, diastolic blood pressure, mean arterial pressure, and pulse pressure (p>0.05).
    [Show full text]
  • Radionuclear Measurement of Peripheral Hemodynamics In
    RadionuclearMeasurementof Peripheral Hemodynamics in Selection of Vasodilators for Treatment of Heart Failure Yasuhiro Todo, Mitsumasa Ohyanagi, Ryu Fujisue, and Tadaaki Iwasaki Hyogo College ofMedicine, Nishinomiya, Japan Inorder to select the optimal vasodilator for the treatment of patients with congestive heart failure (CHF), the acute effects of three vasodilators (isosorbide dinitrate (ISDN) 5 mg, nifedipine 10 mg, and prazosin 1 mg) on peripheral capacitance and resistance vessels (CV and RV)were evaluated by a newly devised radionuclear technique (Study 1).Thirty-six @ patients with chronic CHF were dividedinto Group A (ejectionfraction (EF) 35%, n = 20, mean EF: 47.2 ±6.5%) and B (EF < 35%, n = 16, mean EF: 24.8 ±7.1%). ISDNproduced the strongest CVdilatation(25% in both groups). Nifedipinereduced RVtone in Groups A and B (14% and 27%, respectively),and CVtone in Group A (6%). Prazosin had the most prominent effects on both vessels in Group B. From these results, it appeared: (a) ISDN is indicated for the cases with increased CV tone, (b) nifedipine is suitable for those with @ increased RV tone, (C)in cases of increased tone in both vessels, nifedipine (when EF 35%) or prazosin (when EF < 35%) is optimal.To evaluate the validityof this assignment, 49 subjects with CHF were divided into Group 1 (n = 16, increased CV tone), Group 2 (n = 17, increased RV tone), and Group 3 (n = 16, increased CV and RV tone) in Study 2. In Group 1, the changes of all indexes were not significantly different between the subjects treated with optimal drug based on the assignment (subgroup P) and those with a non-optimaldrug (subgroup N)after 2 wk of therapy.
    [Show full text]
  • 59 Arterial Catheter Insertion (Assist), Care, and Removal 509
    PROCEDURE Arterial Catheter Insertion 59 (Assist), Care, and Removal Hillary Crumlett and Alex Johnson PURPOSE: Arterial catheters are used for continuous monitoring of blood pressure, assessment of cardiovascular effects of vasoactive drugs, and frequent arterial blood gas and laboratory sampling. In addition, arterial catheters provide access to blood samples that support the diagnostics related to oxygen, carbon dioxide, and bicarbonate levels (oxygenation, ventilation, and acid-base status). PREREQUISITE NURSING aortic valve closes, marking the end of ventricular systole. KNOWLEDGE The closure of the aortic valve produces a small rebound wave that creates a notch known as the dicrotic notch. The • Knowledge of the anatomy and physiology of the vascu- descending limb of the curve (diastolic downslope) repre- lature and adjacent structures is needed. sents diastole and is characterized by a long declining • Knowledge of the principles of hemodynamic monitoring pressure wave, during which the aortic wall recoils and is necessary. propels blood into the arterial network. The diastolic pres- • Understanding of the principles of aseptic technique is sure is measured as the lowest point of the diastolic needed. downslope, which should be less than 80 mm Hg in • Conditions that warrant the use of arterial pressure moni- adults. 21 toring include patients with the following: • The difference between the systolic and diastolic pres- ❖ Frequent blood sampling: sures is the pulse pressure, with a normal value of about Respiratory conditions requiring arterial blood gas 40 mm Hg. monitoring (oxygenation, ventilation, acid-base • Arterial pressure is determined by the relationship between status) blood fl ow through the vessels (cardiac output) and the Bleeding, actual or potential resistance of the vessel walls (systemic vascular resis- Electrolyte or glycemic abnormalities, actual or tance).
    [Show full text]
  • Fluid Resuscitation Therapy for Hemorrhagic Shock
    CLINICAL CARE Fluid Resuscitation Therapy for Hemorrhagic Shock Joseph R. Spaniol vides a review of the 4 types of shock, the 4 classes of Amanda R. Knight, BA hemorrhagic shock, and the latest research on resuscita- tive fluid. The 4 types of shock are categorized into dis- Jessica L. Zebley, MS, RN tributive, obstructive, cardiogenic, and hemorrhagic Dawn Anderson, MS, RN shock. Hemorrhagic shock has been categorized into 4 Janet D. Pierce, DSN, ARNP, CCRN classes, and based on these classes, appropriate treatment can be planned. Crystalloids, colloids, dopamine, and blood products are all considered resuscitative fluid treat- ment options. Each individual case requires various resus- ■ ABSTRACT citative actions with different fluids. Healthcare Hemorrhagic shock is a severe life-threatening emergency professionals who are knowledgeable of the information affecting all organ systems of the body by depriving tissue in this review would be better prepared for patients who of sufficient oxygen and nutrients by decreasing cardiac are admitted with hemorrhagic shock, thus providing output. This article is a short review of the different types optimal care. of shock, followed by information specifically referring to hemorrhagic shock. The American College of Surgeons ■ DISTRIBUTIVE SHOCK categorized shock into 4 classes: (1) distributive; (2) Distributive shock is composed of 3 separate categories obstructive; (3) cardiogenic; and (4) hemorrhagic. based on their clinical outcome. Distributive shock can be Similarly, the classes of hemorrhagic shock are grouped categorized into (1) septic; (2) anaphylactic; and (3) neu- by signs and symptoms, amount of blood loss, and the rogenic shock. type of fluid replacement. This updated review is helpful to trauma nurses in understanding the various clinical Septic shock aspects of shock and the current recommendations for In accordance with the American College of Chest fluid resuscitation therapy following hemorrhagic shock.
    [Show full text]
  • Reducing Arterial Catheters
    Reducing the Risk of Catheter-Related Bloodstream Infections: Peripheral Arterial Catheters Amy Bardin Spencer, EdD(c), MS, RRT, VA-BC™ Manager, Clinical Marketing – Strategic Programs – Teleflex Russ Olmsted, MPH, CIC Director, Infection Prevention & Control, Trinity Health Paid consultant, Ethicon, BIOPATCH products Disclosure • This presentation reflects the technique, approaches and opinions of the individual presenters. This Ethicon sponsored presentation is not intended to be used as a training guide. The steps demonstrated may not be the complete steps of the procedure. Before using any medical device, review all relevant package inserts with particular attention to the indications, contraindications, warnings and precautions, and steps for use of the device(s). • Amy Bardin Spencer and Russ Olmsted are compensated by and presenting on behalf of Ethicon and must present information in accordance with applicable regulatory requirements. 0.8% of arterial lines become infected Maki DG et al., Mayo Clinic Proc 2006;81:1159-1171. Are You Placing Arterial Catheters? 16,438 per day 6,000,000 arterial catheters 680 every hour Maki DG et al., Mayo Clinic Proc 2006;81:1159-1171. 131 per day 48,000 arterial catheter-related bloodstream infections 5 patients every hour Maki DG et al., Mayo Clinic Proc 2006;81:1159-1171. Risk Factors • Lack of insertion compliance • No surveillance procedure • No bundle specific to arterial device insertion or maintenance • Multiple inserters with variations in skill set Maki DG et al., Mayo Clinic Proc 2006;81:1159-1171.
    [Show full text]
  • 100% NON-INVASIVE FLUID MANAGEMENT Proper Fluid Management May Improve Clinical Outcomes, Potentially Saving Millions in Operating Costs1,2
    100% NON-INVASIVE FLUID MANAGEMENT Proper Fluid Management May Improve Clinical Outcomes, Potentially Saving Millions in Operating Costs1,2 The Starling fluid management monitoring system provides a full hemodynamic profile within seconds. The effect of fluids can be monitored at any time and treatment modified accordingly, across the continuum of care: ED > ICU > OR > RRT In a retrospective, matched, single-center study of nearly 200 patients, researchers from the University of Kansas Health System evaluated stroke volume (SV) guided resuscitation in 100 ICU patients with severe sepsis and septic shock and found1: Initiation of Acute % ICU Length of Stay -2.89 DAYS Dialysis Therapy -13.25 Save an estimated Risk of Mechanical % $14,498 per Ventilation -51 treated patient3 $14K Starling - Over 80% of hospitalized patients receive IV fluids.4 Yet studies show that giving too little or too much fluid can lead to serious complications and contribute to rising healthcare costs.5,6 - Studies also show that only ~50% of hemodynamically unstable patients will respond to IV fluid by increasing cardiac output and perfusion. Assessing whether fluid may help or harm a patient is a critical step in optimizing treatment.7 - Using only blood pressure, urine output and heart rate to measure fluid responsiveness may provide limited and inconclusive information.7 TAKE THE GUESSWORK OUT OF YOUR FLUID ASSESSMENT WITH STARLING - Provides a dynamic assessment of fluid responsiveness — accurately, precisely and 100% non-invasively. - Supports individualized fluid therapy without requiring an invasive arterial or central line, potentially reducing the risk of hospital-acquired infections and other complications.8 - Independently validated vs.
    [Show full text]
  • Intubation Through a Laryngeal Mask Airway by Fiberoptic Bronchoscope in an Infant with a Mass at the Base of the Tongue − a Case Report −
    대한마취과학회지 2008; 54: S 43~6 □ 영문논문 □ Korean J Anesthesiol Vol. 54, No. 3, March, 2008 Intubation through a Laryngeal Mask Airway by Fiberoptic Bronchoscope in an Infant with a Mass at the Base of the Tongue − A case report − Department of Anesthesiology and Pain Medicine, Anesthesiology and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea Ji Eun Kim, M.D., Chul Ho Chang, M.D., and Yong-Taek Nam, M.D. Failed or difficult tracheal intubation remains an important cause of mortality and morbidity during anesthesia, especially in infants with anatomical or pathological abnormalities of the airway. We report on a 4.1 kg, 85-day-male infant with a thyroglossal duct cyst at the tongue base who could not be conventionally ventilated and intubated in the supine position. The infant was intubated with a 3-mm endotracheal tube through the laryngeal mask airway (LMA) with guidance of a fiberoptic bronchoscope (FOB). However, the pilot balloon did not pass through the 1.5-mm LMA conduit. After cutting the pilot balloon, we removed the LMA and inserted a central venous catheter guide-wire through the endotracheal tube to increase the endotracheal tube to 3.5 mm. This maneuver allowed us to secure the airway without further problems. (Korean J Anesthesiol 2008; 54: S 43~6) Key Words: fiberoptic bronchoscope, infant, intubation, laryngeal mask airway, thyroglossal duct cyst. Failed or difficult tracheal intubation is an important cause conventional laryngoscopy.8) of mortality and morbidity during anesthesia.1-3) Difficulties are In the present report, we describe the successful intubation more frequent in pediatric patients because of their anatomical with LMA and FOB under the aid of central venous catheter variations.4) Tracheal intubation of infants with various anato- guide wire in a 4.1 kg, 85-day-male infant, who could not be mical and pathological abnormalities of the airway can be a conventionally ventilated and intubated.
    [Show full text]
  • Arterial Line
    Arterial Line An arterial line is a thin catheter inserted into an artery. Arterial line placement is a common procedure in various critical care settings. It is most commonly used in intensive care medicine and anesthesia to monitor blood pressure directly and in real time (rather than by intermittent and indirect measurement, like a blood pressure cuff) and to obtain samples for arterial blood gas analysis. There are specific insertion sites, trained personnel and procedures for arterial lines. There are also specific techniques for drawing a blood sample from an A-Line or arterial line. An arterial line is usually inserted into the radial artery in the wrist, but can also be inserted into the brachial artery at the elbow, into the femoral artery in the groin, into the dorsalis pedis artery in the foot, or into the ulnar artery in the wrist. In both adults and children, the most common site of cannulation is the radial artery, primarily because of the superficial nature of the vessel and the ease with which the site can be maintained. Additional advantages of radial artery cannulation include the consistency of the anatomy and the low rate of complications. After the radial artery, the femoral artery is the second most common site for arterial cannulation. One advantage of femoral artery cannulation is that the vessel is larger than the radial artery and has stronger pulsation. Additional advantages include decreased risk of thrombosis and of accidental catheter removal, though the overall complication rate remains comparable. There has been considerable debate over whether radial or femoral arterial line placement more accurately measures blood pressure and mean arterial pressure, however, both approaches seem to perform well for this function.
    [Show full text]
  • The Nurses Group Poster Session
    THE NURSES GROUP POSTER SESSION NP001 This abstract outlines the development and testing of an Family members’ experiences of different caring education program for family carers of individuals about to organizations during allogeneic hematopoietic stem cells undergo BMT. The project aimed to increase carer confidence transplantation - A qualitative interview study in supporting newly discharged blood and marrow transplant K. Bergkvist1,*, J. Larsen2, U.-B. Johansson1, J. Mattsson3, (BMT) recipients through an interactive education program. B. Fossum1 Method: Evaluation methodology was used to examine the 1 2 impact on carer confidence. Brief questionnaires to assess level Sophiahemmet University, Red Cross University College, fi 3Oncology and Pathology, Karolinska Institutet, Stockholm, of con dence were implemented pre- and post- each session; fi Sweden questions were speci c to the content of that session. Following completion of the program an overall evaluation Introduction: Home care after allogeneic hematopoietic stem survey was also completed. The education sessions were developed drawing on evidence from literature, unit specific cell transplantation (HSCT) has been an option for over ’ 15 years. Earlier studies have shown that home care is safe practice guidelines and the team s expertise. Carers of and has medical advantages. Because of the complex and individuals who were about to receive, or currently receiving intensive nature of the HSCT, most patients require a family BMT, were invited to attend the education program. member to assist them with their daily living. Today, there is a Completing the evaluation was not a program requirement. limited knowledge about family members’ experiences in Results: Up to 14 carers attended each session.
    [Show full text]
  • Nitric Oxide, the Biological Mediator of the Decade: Fact Or Fiction?
    Eur Respir J 1997; 10: 699–707 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10030699 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 SERIES 'CLINICAL PHYSIOLOGY IN RESPIRATORY INTENSIVE CARE' Edited by A. Rossi and C. Roussos Number 14 in this Series Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans Nitric oxide, the biological mediator of the decade: fact or fiction? S. Singh, T.W. Evans. Unit of Critical Care, National Heart & ERS Journals Ltd 1997. Lung Institute, Royal Brompton Hospital, ABSTRACT: Nitric oxide (NO), an atmospheric gas and free radical, is also an London, UK. important biological mediator in animals and humans. Its enzymatic synthesis by constitutive (c) and inducible (i) isoforms of NO synthase (NOS) and its reactions Correspondence: T.W. Evans with other biological molecules such as reactive oxygen species are well charac- Royal Brompton Hospital Sydney Street terized. NO modulates pulmonary and systemic vascular tone through its vasodila- London SW3 6NP tor property. It has antithrombotic functions and mediates some consequences of UK the innate and acute inflammatory responses; cytokines and bacterial toxins induce widespread expression of iNOS associated with microvascular and haemodynam- Keywords: Acute respiratory distress syn- ic changes in sepsis. drome Within the lungs, a diminution of NO production is implicated in pathological hypoxic pulmonary vasoconstriction states associated with pulmonary hypertension, such as acute respiratory distress nitric oxide syndrome: inhaled NO is a selective pulmonary vasodilator and can improve ven- nitric oxide synthase tilation-perfusion mismatch. However, it may have deleterious effects through mod- pulmonary hypertension ulating hypoxic pulmonary vasoconstriction.
    [Show full text]
  • Relationship Between Vasodilatation and Cerebral Blood Flow Increase in Impaired Hemodynamics: a PET Study with the Acetazolamide Test in Cerebrovascular Disease
    CLINICAL INVESTIGATIONS Relationship Between Vasodilatation and Cerebral Blood Flow Increase in Impaired Hemodynamics: A PET Study with the Acetazolamide Test in Cerebrovascular Disease Hidehiko Okazawa, MD, PhD1,2; Hiroshi Yamauchi, MD, PhD1; Hiroshi Toyoda, MD, PhD1,2; Kanji Sugimoto, MS1; Yasuhisa Fujibayashi, PhD2; and Yoshiharu Yonekura, MD, PhD2 1PET Unit, Research Institute, Shiga Medical Center, Moriyama, Japan; and 2Biomedical Imaging Research Center, Fukui Medical University, Fukui, Japan Key Words: acetazolamide; cerebrovascular disease; cerebral The changes in cerebral blood flow (CBF) and arterial-to- blood volume; vasodilatory capacity; cerebral perfusion pressure capillary blood volume (V0) induced by acetazolamide (ACZ) are expected to be parallel each other in the normal circula- J Nucl Med 2003; 44:1875–1883 tion; however, it has not been proven that the same changes in those parameters are observed in patients with cerebro- vascular disease. To investigate the relationship between changes in CBF, vasodilatory capacity, and other hemody- namic parameters, the ACZ test was performed after an The ability of autoregulation to maintain the cerebral 15O-gas PET study. Methods: Twenty-two patients with uni- blood flow (CBF), which resides in the cerebral circulation lateral major cerebral arterial occlusive disease underwent despite transient changes in systemic mean arterial blood 15 PET scans using the H2 O bolus method with the ACZ test pressure, has been shown to occur via the mechanism of 15 after the O-gas steady-state method. CBF and V0 for each arteriolar vasodilatation in the cerebral circulation (1). The subject were calculated using the 3-weighted integral vasodilatory change in the cerebral arteries is assumed for method as well as the nonlinear least-squares fitting method.
    [Show full text]