Four Faces of Cellular Senescence

Total Page:16

File Type:pdf, Size:1020Kb

Four Faces of Cellular Senescence Published February 14, 2011 JCB: Review Four faces of cellular senescence Francis Rodier1,2 and Judith Campisi3,4 1The Research Centre of the University of Montreal Hospital Centre/Institut du Cancer de Montréal, Montreal, Quebec, H2L 4M1 Canada 2Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec, H3C 3J7 Canada 3Buck Institute for Age Research, Novato, CA 94945 4Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Cellular senescence is an important mechanism for pre- also offer insights into why, beyond the simple growth arrest, venting the proliferation of potential cancer cells. Recently, the complex senescent phenotypes may have evolved. however, it has become apparent that this process entails Cellular senescence: a primer more than a simple cessation of cell growth. In addition Cellular senescence refers to the essentially irreversible growth to suppressing tumorigenesis, cellular senescence might arrest that occurs when cells that can divide encounter onco- also promote tissue repair and fuel inflammation associ- genic stress. With the possible exception of embryonic stem Downloaded from ated with aging and cancer progression. Thus, cellular cells (Miura et al., 2004), most division-competent cells, in- senescence might participate in four complex biological cluding some tumor cells, can undergo senescence when appro- priately stimulated (Shay and Roninson, 2004; Campisi and processes (tumor suppression, tumor promotion, aging, d’Adda di Fagagna, 2007). and tissue repair), some of which have apparently op- What causes cellular senescence? Senescence- posing effects. The challenge now is to understand the inducing stimuli are myriad. We now know that the limited senescence response well enough to harness its benefits growth of human cells in culture is due in part to telomere ero- jcb.rupress.org while suppressing its drawbacks. sion, the gradual loss of DNA at the ends of chromosomes (telo- meres). Telomeric DNA is lost with each S phase because DNA polymerases are unidirectional and cannot prime a new DNA strand, resulting in loss of DNA near the end of a chromosome; additionally, most cells do not express telomerase, the special- on February 21, 2011 Introduction ized enzyme that can restore telomeric DNA sequences de novo Cellular senescence was formally described more than 40 years (Harley et al., 1990; Bodnar et al., 1998). We also know that ago as a process that limited the proliferation (growth) of nor- eroded telomeres generate a persistent DNA damage response mal human cells in culture (Hayflick, 1965). This landmark (DDR), which initiates and maintains the senescence growth paper contained two prescient statements. The first statement arrest (d’Adda di Fagagna et al., 2003; Takai et al., 2003; Herbig was “unlimited cellular division or . escape from senescent- et al., 2004; Rodier et al., 2009, 2011). In fact, many senescent like changes . can only be achieved by [somatic] cells which cells harbor genomic damage at nontelomeric sites, which also have . assumed properties of cancer cells.” The second was generate the persistent DDR signaling needed for the senes- “the [cessation of cell growth in culture] may be related to se- cence growth arrest (Nakamura et al., 2008). DNA double strand THE JOURNAL OF CELL BIOLOGY nescence [aging] in vivo.” Thus, nearly half a century ago, the breaks are especially potent senescence inducers (DiLeonardo process now known as cellular senescence was linked to both et al., 1994). In addition, compounds such as histone deacetylase tumor suppression and aging. inhibitors, which relax chromatin without physically damaging In the ensuing decades, we learned much about what causes DNA, activate the DDR proteins ataxia telangiectasia mutated cellular senescence and the nature of the senescent phenotype. (ATM) and the p53 tumor suppressor (Bakkenist and Kastan, Importantly, we are beginning to understand its physiological 2003), and induce a senescence response (Ogryzko et al., 1996; relevance. Recent data validate the early idea that cellular se- Munro et al., 2004). Finally, many cells senesce when they ex- nescence is important for tumor suppression. The data now also perience strong mitogenic signals, such as those delivered by strongly suggest that cellular senescence contributes to aging, certain oncogenes or highly expressed pro-proliferative genes and, further, that senescence-associated phenotypes can con- (Serrano et al., 1997; Lin et al., 1998; Zhu et al., 1998; Dimri et al., tribute to both tumor progression and normal tissue repair. They 2000). Notably, these mitogenic signals can create DNA damage Correspondence to Judith Campisi: [email protected] or [email protected] and a persistent DDR due to misfired replication origins and Abbreviations used in this paper: ATM, ataxia telangiectasia mutated; DDR, DNA © 2011 Rodier and Campisi This article is distributed under the terms of an Attribution– damage response; DNA-SCARS, DNA segments with chromatin alterations rein- Noncommercial–Share Alike–No Mirror Sites license for the first six months after the pub- forcing senescence; IL, interleukin; MMP, matrix metalloproteinase; NF-B, nuclear lication date (see http://www.rupress.org/terms). After six months it is available under a factor B; SA-Bgal, senescence-associated -galactosidase; SASP, senescence- Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, associated secretory phenotype. as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). The Rockefeller University Press J. Cell Biol. Vol. 192 No. 4 547–556 www.jcb.org/cgi/doi/10.1083/jcb.201009094 JCB 547 Published February 14, 2011 Figure 1. Hallmarks of senescent cells. Senescent cells differ from other nondividing (quiescent, terminally differentiated) cells in several ways, although no single feature of the senescent phenotype is exclusively specific. Hallmarks of senescent cells include an essentially irreversible growth arrest; expression Downloaded from of SA-Bgal and p16INK4a; robust secretion of numerous growth factors, cytokines, proteases, and other proteins (SASP); and nuclear foci containing DDR proteins (DNA-SCARS/TIF) or heterochromatin (SAHF). The pink circles in the nonsenescent cell (left) and senescent cell (right) represent the nucleus. replication fork collapse (Bartkova et al., 2006; Di Micco et al., (b) Senescent cells increase in size, sometimes enlarging 2006; Mallette et al., 2007). Thus, many senescence-inducing more than twofold relative to the size of nonsenescent counter- stimuli cause epigenomic disruption or genomic damage. parts (Hayflick, 1965). Senescence can also occur, however, without detect- (c) Senescent cells express a senescence-associated jcb.rupress.org able DDR signaling. “Culture stress,” the natural and in vivo -galactosidase (SA-Bgal; Dimri et al., 1995), which partly equivalent of which are unknown, causes a senescence ar- reflects the increase in lysosomal mass (Lee et al., 2006). rest without significant telomere erosion (Ramirez et al., (d) Most senescent cells express p16INK4a, which is 2001). These stresses could include inappropriate substrata not commonly expressed by quiescent or terminally differ- (e.g., tissue culture plastic), serum (most cells experience entiated cells (Alcorta et al., 1996; Hara et al., 1996; Serrano plasma, not serum, in vivo), and oxidative stress (e.g., cul- et al., 1997; Brenner et al., 1998; Stein et al., 1999). In some on February 21, 2011 ture in atmospheric O2, which is hyperphysiological; Fusenig cells, p16INK4a, by activating the pRB tumor suppressor, and Boukamp, 1998; Yaswen and Stampfer, 2002; Parrinello causes formation of senescence-associated heterochromatin et al., 2003). Cells also senesce without a DDR upon loss foci (SAHF), which silence critical pro-proliferative genes of the Pten tumor suppressor, a phosphatase that counteracts (Narita et al., 2003). p16INK4a, a tumor suppressor, is in- pro-proliferative/pro-survival kinases (Alimonti et al., 2010). duced by culture stress and as a late response to telomeric Additionally, ectopic expression of the cyclin-dependent ki- or intrachromosomal DNA damage (Brenner et al., 1998; nase inhibitors (CDKis) that normally enforce the senescence Robles and Adami, 1998; Ramirez et al., 2001; te Poele et al., growth arrest, notably p21WAF1 and p16INK4a, cause se- 2002; Jacobs and de Lange, 2004; Le et al., 2010). Moreover, nescence without an obvious DDR (McConnell et al., 1998; p16INK4a expression increases with age in mice and humans Rodier et al., 2009). (Zindy et al., 1997; Nielsen et al., 1999; Krishnamurthy What defines a senescent cell? Senescent cells are et al., 2004; Ressler et al., 2006; Liu et al., 2009), and its ac- not quiescent or terminally differentiated cells, although the tivity has been functionally linked to the reduction in progeni- distinction is not always straightforward. No marker or hall- tor cell number that occurs in multiple tissues during aging mark of senescence identified thus far is entirely specific to the (Janzen et al., 2006; Krishnamurthy et al., 2006; Molofsky senescent state. Further, not all senescent cells express all pos- et al., 2006). sible senescence markers. Nonetheless, senescent cells display (e) Cells that senesce with persistent DDR signaling harbor several phenotypes, which, in aggregate, define the senescent persistent nuclear foci, termed DNA segments with chromatin state (Fig. 1). Salient features of senescent cells are:
Recommended publications
  • Disruptive Chemicals, Senescence and Immortality
    Disruptive chemicals, senescence and immortality Carnero, A., Blanco-Aparicio, C., Kondoh, H., Lleonart, M. E., Martinez-Leal, J. F., Mondello, C., ... & Yasaei, H. (2015). Disruptive chemicals, senescence and immortality. Carcinogenesis, 36(Suppl 1), S19-S37. doi:10.1093/carcin/bgv029 10.1093/carcin/bgv029 Oxford University Press Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Carcinogenesis, 2015, Vol. 36, Supplement 1, S19–S37 doi:10.1093/carcin/bgv029 Review review Disruptive chemicals, senescence and immortality Amancio Carnero*, Carmen Blanco-Aparicio1, Hiroshi Kondoh2, Matilde E. Lleonart3, Juan Fernando Martinez-Leal4, Chiara Mondello5, A.Ivana Scovassi5, William H.Bisson6, Amedeo Amedei7, Rabindra Roy8, Jordan Woodrick8, Annamaria Colacci9, Monica Vaccari9, Jayadev Raju10, Fahd Al-Mulla11, Rabeah Al- Downloaded from Temaimi11, Hosni K. Salem12, Lorenzo Memeo13, Stefano Forte13, Neetu Singh14, Roslida A. Hamid15, Elizabeth P. Ryan16, Dustin G. Brown16, John Pierce Wise Sr17, Sandra S.Wise17 and Hemad Yasaei18 http://carcin.oxfordjournals.org/ Instituto de Biomedicina de Sevilla (IBIS/CSIC/HUVR/Univ. Sevilla), Oncohematology and Genetics Department, Avda Manuel siurot sn, 41013 Sevilla, Spain, 1Spanish National Cancer Research Center, Experimental Therapuetics Department, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain, 2Department of Geriatric Medicine, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku Kyoto 606-8507, Japan, 3Institut De Recerca Hospital Vall D’Hebron, Passeig Vall d’Hebron, 119–129,
    [Show full text]
  • The Emergence of Senescent Surface Biomarkers As Senotherapeutic Targets
    cells Review The Emergence of Senescent Surface Biomarkers as Senotherapeutic Targets Martina Rossi and Kotb Abdelmohsen * Laboratory of Genetics and Genomics, RNA Regulation Section, National Institute on Aging Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Baltimore, MD 21224, USA; [email protected] * Correspondence: [email protected] Abstract: Senescence is linked to a wide range of age-associated diseases and physiological declines. Thus, senotherapeutics are emerging to suppress the detrimental effects of senescence either by senomorphics or senolytics. Senomorphics suppress the traits associated with senescence phenotypes, while senolytics aim to clear senescent cells by suppressing their survival and enhancing the apoptotic pathways. The main goal of these approaches is to suppress the proinflammatory senescence- associated secretory phenotype (SASP) and to promote the immune recognition and elimination of senescent cells. One increasingly attractive approach is the targeting of molecules or proteins specifically present on the surface of senescent cells. These proteins may play roles in the maintenance and survival of senescent cells and hence can be targeted for senolysis. In this review, we summarize the recent knowledge regarding senolysis with a focus on novel surface biomarkers of cellular senescence and discuss their emergence as senotherapeutic targets. Keywords: senescence; surface proteins; surfaceome; senolytics; senolysis; senostatic; senescent cell clearance; senotherapeutics; senotherapy Citation: Rossi, M.; Abdelmohsen, K. The Emergence of Senescent Surface Biomarkers as Senotherapeutic Targets. Cells 2021, 10, 1740. 1. Introduction https://doi.org/10.3390/cells Cellular senescence is a phenotype associated with limited replicative capacity and 10071740 irreversible growth arrest of primary cells first described by Leonard Hayflick in the early 1960s [1].
    [Show full text]
  • Does Senescence Promote Fitness in Caenorhabditis Elegans by Causing Death?
    Institute of Healthy Ageing Preprint 1st Nov 2018 Essay Does senescence promote fitness in Caenorhabditis elegans by causing death? Jennifer N. Lohr1, Evgeniy R. Galimov1 and David Gems* Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK. 1These authors contributed equally. ∗ Corresponding author. E-mail address: [email protected] (D. Gems). 1 Institute of Healthy Ageing Preprint 1st Nov 2018 Abstract A widely appreciated conclusion from evolutionary theory is that senescence (aging) is of no adaptive value to the individual that it afflicts. Yet studies of C. elegans and S. cerevisiae are increasingly revealing the presence of processes which actively cause senescence and death, leading some biogerontologists to wonder about the established theory. Here we argue that programmed death that increases fitness could occur in C. elegans and S. cerevisiae, and that this is consistent with the classic evolutionary theory of aging. This is because of the special conditions under which these organisms have evolved, particularly the existence of clonal populations with limited dispersal and, in the case of C. elegans, the brevity of the reproductive period caused by protandry. Under these conditions, death-promoting mechanisms could promote worm fitness by enhancing inclusive fitness, or worm colony fitness through group selection. Such altruistic, adaptive death is not expected to evolve in organisms with outbred, dispersed populations. The plausibility of adaptive death in C. elegans is supported by computer modelling studies, and new knowledge about the ecology of this species. To support these arguments we also review the biology of adaptive death, and distinguish three forms: consumer sacrifice, biomass sacrifice and defensive sacrifice.
    [Show full text]
  • Cellular Senescence Promotes Skin Carcinogenesis Through P38mapk and P44/P42mapk Signaling
    Author Manuscript Published OnlineFirst on July 8, 2020; DOI: 10.1158/0008-5472.CAN-20-0108 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/p42 MAPK signaling Fatouma Alimirah1, Tanya Pulido1, Alexis Valdovinos1, Sena Alptekin1,2, Emily Chang1, Elijah Jones1, Diego A. Diaz1, Jose Flores1, Michael C. Velarde1,3, Marco Demaria1,4, Albert R. Davalos1, Christopher D. Wiley1, Chandani Limbad1, Pierre-Yves Desprez1, and Judith Campisi1,5* 1Buck Institute for Research on Aging, Novato, CA 94945, USA 2Dokuz Eylul University School of Medicine, Izmir 35340, Turkey 3Institute of Biology, University of the Philippines Diliman, College of Science, Quezon City 1101, Philippines 4European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, the Netherlands 5Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA *Lead Contact: Judith Campisi, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Email: [email protected] or [email protected]. Telephone: 1-415-209-2066; Fax: 1-415-493-3640 Running title: Senescence and skin carcinogenesis Key words: doxorubicin, senescence-associated secretory phenotype, squamous cell carcinoma, microenvironment, inflammation, transgenic mice, tumorspheres Conflict of Interests JC is a co-founder of Unity Biotechnology and MD owns equity in Unity Biotechnology. All other authors declare no competing financial interests. Downloaded from cancerres.aacrjournals.org on September 25, 2021. © 2020 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 8, 2020; DOI: 10.1158/0008-5472.CAN-20-0108 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • Cellular Senescence: Friend Or Foe to Respiratory Viral Infections?
    Early View Perspective Cellular Senescence: Friend or Foe to Respiratory Viral Infections? William J. Kelley, Rachel L. Zemans, Daniel R. Goldstein Please cite this article as: Kelley WJ, Zemans RL, Goldstein DR. Cellular Senescence: Friend or Foe to Respiratory Viral Infections?. Eur Respir J 2020; in press (https://doi.org/10.1183/13993003.02708-2020). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2020. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. Cellular Senescence: Friend or Foe to Respiratory Viral Infections? William J. Kelley1,2,3 , Rachel L. Zemans1,2 and Daniel R. Goldstein 1,2,3 1:Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA 2:Program in Immunology, University of Michigan, Ann Arbor, MI, USA 3:Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI USA Email of corresponding author: [email protected] Address of corresponding author: NCRC B020-209W 2800 Plymouth Road Ann Arbor, MI 48104, USA Word count: 2750 Take Home Senescence associates with fibrotic lung diseases. Emerging therapies to reduce senescence may treat chronic lung diseases, but the impact of senescence during acute respiratory viral infections is unclear and requires future investigation. Abstract Cellular senescence permanently arrests the replication of various cell types and contributes to age- associated diseases.
    [Show full text]
  • Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases
    cells Review Immune Clearance of Senescent Cells to Combat Ageing and Chronic Diseases Ping Song * , Junqing An and Ming-Hui Zou Center for Molecular and Translational Medicine, Georgia State University, 157 Decatur Street SE, Atlanta, GA 30303, USA; [email protected] (J.A.); [email protected] (M.-H.Z.) * Correspondence: [email protected]; Tel.: +1-404-413-6636 Received: 29 January 2020; Accepted: 5 March 2020; Published: 10 March 2020 Abstract: Senescent cells are generally characterized by permanent cell cycle arrest, metabolic alteration and activation, and apoptotic resistance in multiple organs due to various stressors. Excessive accumulation of senescent cells in numerous tissues leads to multiple chronic diseases, tissue dysfunction, age-related diseases and organ ageing. Immune cells can remove senescent cells. Immunaging or impaired innate and adaptive immune responses by senescent cells result in persistent accumulation of various senescent cells. Although senolytics—drugs that selectively remove senescent cells by inducing their apoptosis—are recent hot topics and are making significant research progress, senescence immunotherapies using immune cell-mediated clearance of senescent cells are emerging and promising strategies to fight ageing and multiple chronic diseases. This short review provides an overview of the research progress to date concerning senescent cell-caused chronic diseases and tissue ageing, as well as the regulation of senescence by small-molecule drugs in clinical trials and different roles and regulation of immune cells in the elimination of senescent cells. Mounting evidence indicates that immunotherapy targeting senescent cells combats ageing and chronic diseases and subsequently extends the healthy lifespan. Keywords: cellular senescence; senescence immunotherapy; ageing; chronic disease; ageing markers 1.
    [Show full text]
  • Cellular Senescence and Inflammaging in the Skin Microenvironment
    International Journal of Molecular Sciences Review Cellular Senescence and Inflammaging in the Skin Microenvironment Young In Lee 1,2 , Sooyeon Choi 1, Won Seok Roh 1 , Ju Hee Lee 1,2,* and Tae-Gyun Kim 1,* 1 Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 107-11, Korea; [email protected] (Y.I.L.); [email protected] (S.C.); [email protected] (W.S.R.) 2 Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul 107-11, Korea * Correspondence: [email protected] (J.H.L.); [email protected] (T.-G.K.); Tel.: +82-2-2228-2080 (J.H.L. & T.-G.K.) Abstract: Cellular senescence and aging result in a reduced ability to manage persistent types of inflammation. Thus, the chronic low-level inflammation associated with aging phenotype is called “inflammaging”. Inflammaging is not only related with age-associated chronic systemic diseases such as cardiovascular disease and diabetes, but also skin aging. As the largest organ of the body, skin is continuously exposed to external stressors such as UV radiation, air particulate matter, and human microbiome. In this review article, we present mechanisms for accumulation of senescence cells in different compartments of the skin based on cell types, and their association with skin resident immune cells to describe changes in cutaneous immunity during the aging process. Keywords: inflammaging; senescence; skin; fibroblasts; keratinocytes; melanocytes; immune cells Citation: Lee, Y.I.; Choi, S.; Roh, W.S.; Lee, J.H.; Kim, T.-G. Cellular Senescence and Inflammaging in the 1.
    [Show full text]
  • Understanding the Molecular Interplay Between Senescence, Rejuvenation, and Healthy Ageing. Eleanor Tyler
    Understanding the molecular interplay between senescence, rejuvenation, and healthy ageing. Eleanor Tyler A thesis presented for the degree of Doctor of Philosophy 2016 Supervisors: Dr Cleo L. Bishop Prof. Mike P. Philpott Centre for Cell Biology and Cutaneous Research The Blizard Institute Barts and the London School of Medicine and Dentistry Queen Mary University of London Statement of originality I, Eleanor Tyler, confirm that the research included within this thesis is my own work or that where it has been carried out in collaboration with, or supported by others, that this is duly acknowledged below and my contribution indicated. I attest that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge break any UK law, infringe any third party’s copyright or other Intellectual Property Right, or contain any confidential material. I accept that the College has the right to use plagiarism detection software to check the electronic version of the thesis. I confirm that this thesis has not been previously submitted for the award of a degree by this or any other university. The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author. Signature: Eleanor Tyler Date: 19.12.16 1 Abstract Senescence is classically defined as an irreversible cell cycle arrest. There is now convincing evidence that senescent cells accumulate during human ageing, potentially driving age-related dysfunction through depletion of mitotically active cells and stimulation of chronic inflammation.
    [Show full text]
  • Dissecting Aging and Senescence—Current Concepts and Open Lessons
    cells Review Dissecting Aging and Senescence—Current Concepts and Open Lessons 1,2, , 1,2, 1 1,2 Christian Schmeer * y , Alexandra Kretz y, Diane Wengerodt , Milan Stojiljkovic and Otto W. Witte 1,2 1 Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; [email protected] (A.K.); [email protected] (D.W.); [email protected] (M.S.); [email protected] (O.W.W.) 2 Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany * Correspondence: [email protected] These authors have contributed equally. y Received: 2 October 2019; Accepted: 13 November 2019; Published: 15 November 2019 Abstract: In contrast to the programmed nature of development, it is still a matter of debate whether aging is an adaptive and regulated process, or merely a consequence arising from a stochastic accumulation of harmful events that culminate in a global state of reduced fitness, risk for disease acquisition, and death. Similarly unanswered are the questions of whether aging is reversible and can be turned into rejuvenation as well as how aging is distinguishable from and influenced by cellular senescence. With the discovery of beneficial aspects of cellular senescence and evidence of senescence being not limited to replicative cellular states, a redefinition of our comprehension of aging and senescence appears scientifically overdue. Here, we provide a factor-based comparison of current knowledge on aging and senescence, which we converge on four suggested concepts, thereby implementing the newly emerging cellular and molecular aspects of geroconversion and amitosenescence, and the signatures of a genetic state termed genosenium.
    [Show full text]
  • Cellular Senescence and Apoptosis: How Cellular Responses Might Influence Aging Phenotypes
    Experimental Gerontology 38 (2003) 5–11 www.elsevier.com/locate/expgero Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes Judith Campisia,b,* aLife Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA bBuck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA Received 20 May 2002; accepted 28 May 2002 Abstract Aging in complex multi-cellular organisms such as mammals entails distinctive changes in cells and molecules that ultimately compromise the fitness of adult organisms. These cellular and molecular changes lead to the phenotypes we recognize as aging. This review discusses some of the cellular and molecular changes that occur with age, specifically changes that occur as a result of cellular responses that evolved to ameliorate the inevitable damage that is caused by endogenous and environmental insults. Because the force of natural selection declines with age, it is likely that these processes were never optimized during their evolution to benefit old organisms. That is, some age- related changes may be the result of gene activities that were selected for their beneficial effects in young organisms, but the same gene activities may have unselected, deleterious effects in old organisms, a phenomenon termed antagonistic pleiotropy. Two cellular processes, apoptosis and cellular senescence, may be examples of antagonistic pleiotropy. Both processes are essential for the viability and fitness of young organisms, but may contribute to aging phenotypes, including certain age-related diseases. q 2002 Elsevier Science Inc. All rights reserved. Keywords: Antagonistic pleiotropy; Apoptosis; Cancer; Cellular senescence; DNA damage response; Neurodegeneration; p53; Telomeres 1.
    [Show full text]
  • Aging, Life Span, and Senescence
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 11034–11036, September 1998 From the Academy This paper is summary of a session presented at the Ninth Annual Frontiers of Science Symposium, held November 7–9, 1997, at the Arnold and Mabel Beckman Center of the National Academies of Sciences and Engineering in Irvine, CA. Aging, life span, and senescence LEONARD GUARENTE*, GARY RUVKUN†, AND RICHARD AMASINO‡ *Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; †Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114; and ‡Department of Biochemistry, University of Wisconsin, Madison, WI 53706 Research in the field of aging recently has entered a new era. in old sgs1 mother cells were enlarged and fragmented, Model systems have begun to provide insight into cellular, changes that are also found in very old wild type cells. molecular, and organismal changes that are related intimately What is the molecular basis of this fragmentation and does to aging. One important approach has been the identification it cause aging? Examination of the rDNA in old cells revealed of genes that determine the life span of an organism. The very an accumulation of extrachromosomal rDNA circles (ERCs) existence of genes that when mutated can extend life span of discrete sizes representing oligomers of the rDNA unit (7). suggests that one or a few processes may be critical in aging and ERCs arise from recombination within the rDNA of chromo- that a slowing of these processes may slow aging itself. some XII in the early part of the life span (Fig. 1). Each subsequent cell cycle, the ERCs replicate via the replication Yeast sequence in the rDNA repeats and then segregate asymmetri- cally into mother cells.
    [Show full text]
  • Werner and Hutchinson–Gilford Progeria Syndromes: Mechanistic Basis of Human Progeroid Diseases
    REVIEWS MECHANISMS OF DISEASE Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases Brian A. Kudlow*¶, Brian K. Kennedy* and Raymond J. Monnat Jr‡§ Abstract | Progeroid syndromes have been the focus of intense research in part because they might provide a window into the pathology of normal ageing. Werner syndrome and Hutchinson–Gilford progeria syndrome are two of the best characterized human progeroid diseases. Mutated genes that are associated with these syndromes have been identified, mouse models of disease have been developed, and molecular studies have implicated decreased cell proliferation and altered DNA-damage responses as common causal mechanisms in the pathogenesis of both diseases. Progeroid syndromes are heritable human disorders with therefore termed segmental, as opposed to global, features that suggest premature ageing1. These syndromes progeroid syndromes. Among the segmental progeroid have been well characterized as clinical disease entities, syndromes, the syndromes that most closely recapitu- and in many instances the associated genes and causative late the features of human ageing are Werner syndrome mutations have been identified. The identification of (WS), Hutchinson–Gilford progeria syndrome (HGPS), genes that are associated with premature-ageing-like Cockayne syndrome, ataxia-telangiectasia, and the con- syndromes has increased our understanding of molecu- stitutional chromosomal disorders of Down, Klinefelter lar pathways that protect cell viability and function, and
    [Show full text]