Carolina Chavero

Total Page:16

File Type:pdf, Size:1020Kb

Carolina Chavero Ministerio´ de Cienciaˆ e Tecnologia Observatorio´ Nacional EVOLUC¸ AO˜ DE DISCOS CIRCUNSTELARES EM ESTRELAS DE BAIXA MASSA Carolina Chavero Tese realizada sob a orientac¸ao˜ do Prof. Dr. Ra- miro de la Reza e apresentada a` Divisao˜ de Pro- gramas de Pos-graduac¸´ ao˜ do Observatorio´ Nacional como requisito para a obtenc¸ao˜ do t´ıtulo de Doutor em Astronomia. Rio de Janeiro, Abril de 2009 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. ... Este trabalho ´ededicado especialmente para minha familia, que ´eminha base e meu maior orgulho, e tamb´em para todos aqueles que compartilham comigo o entusiasmo pela Astronomia. Conteudo´ Agradecimentos v Resumo ix Abstract xi Lista de Tabelas xiii Lista de Figuras xix 1 Motivac¸ao˜ 1 1.1 Contextohist´orico............................ 1 2 Discosdotipo debris 5 2.1 Descobertas............................... 5 2.2 M´etododedetecc¸˜ao. 6 2.2.1 Excessosinfravermelhos . 6 2.2.2 Imagensdiretas ........................ 8 2.2.3 Algumasimagens. .. .. .. .. .. .. 12 2.3 Buscas.................................. 15 2.4 Luminosidade: Fator fd ......................... 16 2.4.1 Evoluc¸˜ao temporal dos discos debris ............. 17 2.5 Tempodevidadodiscovs.massaestelar . 20 3 Estrelas com planetas extra-solares 23 3.1 Contextohist´orico. .. .. .. .. .. .. .. 23 3.2 T´ecnicasdedetecc¸˜ao . 25 3.2.1 T´ecnica espectrosc´opica: Velocidade radial (VR) ou Doppler 26 3.2.2 T´ecnica fotom´etrica: Trˆansito planet´ario . ....... 28 3.3 Propriedades dos planetas extra-solares e de suas estrelashospedeiras 29 3.3.1 Distribuic¸˜aodemassase´orbitas . 30 i ii 3.3.2 Metalicidade .......................... 32 3.4 Migrac¸˜aoplanet´aria. 35 4 Evoluc¸ao˜ de discos debris emvoltadeestrelasdebaixamassa 39 4.1 Introduc¸˜aoemotivac¸˜ao . 39 4.2 Amostradediscosresolvidos. 41 4.2.1 Idadesdaamostra.. .. .. .. .. .. .. 41 4.3 Diagramacor-cor ............................ 44 4.3.1 Discos debris resolvidosespacialmente . 44 4.3.2 Discos candidatos a tipo debris ................ 45 4.3.3 Distribuic¸˜ao de discos protoplanet´arios: Evidˆencia de uma regi˜ao de transic¸˜ao com discos debris ............. 56 4.4 Modelosdediscos ........................... 61 4.4.1 Omodelodetransferˆenciaradiativa . 62 4.4.2 Parˆametrosdeentradadomodelo . 62 4.5 Resultados dos modelos de transferˆencia radiativa . ....... 64 4.6 Modeloscolisionais. .. .. .. .. .. .. .. 74 4.7 Evoluc¸˜aodediscos:Conclus˜oes . .. 78 5 Metalicidade das estrelas com discos debris 81 5.1 Introduc¸˜ao................................ 81 5.2 Amostra................................. 84 5.3 Observac¸˜oes............................... 84 5.4 Determinac¸˜ao de parˆametros atmosf´ericos . ...... 84 5.5 Relac¸˜aoidade-metalicidade . 85 5.6 Estrelas com discos debris eplanetas ................. 89 5.7 Considerac¸˜oesfinais . 89 6 Excesso metalico´ em estrelas com planetas 93 6.1 Cen´arioprimordialoudepoluic¸˜ao? . ... 93 6.2 Cen´ariodepoluic¸˜aonasestrelaspostTTauri . ...... 95 6.2.1 “A possible stellar metallic enhancement in post-T Tauri stars by a planetesimal bombardment” ............... 95 6.3 Distribuic¸˜ao de metalicidade em estrelas gigantes complanetas . 107 6.3.1 “Evolved stars suggest an external origin of the enhanced me- tallicity in planet-hosting stars” ................ 107 6.4 Distribuic¸˜ao de elementos refrat´arios e vol´ateis das estrelas com pla- netasdescobertospeloCoRoT . 113 6.4.1 “Distribution of refractory and volatile elements in CoRoT exoplanets host stars” ..................... 113 iii 7 Conclusoes˜ Gerais 123 Bibliograf´ıa 129 iv Agradecimentos Nada na vida conquistamos sozinhos. Sempre precisamos de outras pessoas para alcanc¸ar nossos objetivos. Muitas vezes um simples gesto pode mudar nossa vida e contribuir para nosso sucesso. Este trabalho deve muito a algumas pessoas e instituic¸˜oes, as quais fico feliz de agradecer especialmente: • Ao meu orientador, o Dr. Ramiro de la Reza por milhares de motivos, mas especialmente porque n˜ao s´ose dedicou a me orientar, mas tamb´em me ensinou com o exemplo do dia-a-dia o que ´ea paix˜ao pela ciˆencia, conheci com ele a verdadeira essˆencia do cientista. Agradec¸o muito a oportunidade recebida e valorizo a confianc¸a em mim depositada. N˜ao sei quantos estudantes podem dizer que s˜ao colega de seu “chefe”, eu posso dizer e sentir isso e espero poder continuar trabalhando e aprendendo junto a vocˆe. Por tudo isso Ramiro eu serei sempre grata com a sua pessoa. • Ao Observat´orio Nacional (ON) por me abrir as portas da sua P´os-Graduac¸˜ao (PG) e por ter me sempre dado todo o apoio tanto, institucional como financeiro para desenvolver meu doutorado na maior tranq¨uilidade. Assim tamb´em a todos os integrantes da PG: professores, alunos e secret´arias/os, obrigada pelo trato cordial. • A` CAPES, que financiou a maior parte do meu doutorado e forneceu todo o auxilio necess´ario atrav´es do ON. • A` European Association for Research in Astronomy (EARA) por ter me conce- dido a bolsa Marie Curie no est´agio “sandu´ıche” no Instituto de Astrof´ısica de Canarias (IAC), possibilitando-me conhecer e interagir com outro instituto de pesquisa e todo o enriquecimento profissional que isso possibilita. • Ao Instituto de Astrof´ısica de Canarias, ao Dr. Garik Israelian e seu grupo de trabalho por ter me recebido e compartilhado suas pesquisa e dados comigo. v vi • A Claudio B. Pereira por ter me apresentado pela primeira vez o mundo da determinac¸˜ao das abundˆancias espectrosc´opicas, que parecia chinˆes para mim no comec¸o. Obrigada pela paciˆencia e tempo dedicado, e tamb´em pelo cafezi- nho do dia-a-dia que faz do ambiente de trabalho mais humano. • Aos meus queridos amigos e colegas argentinos, Fernando, Ren´ee Alvaro que amorteceram minha chegada ao Rio de Janeiro. Eu n˜ao sei que teria sido de mim sem vocˆes, com suas dicas e carinho tudo foi e ainda ´emais f´acil, vocˆes es- tiveram em cada detalhe, eu acho que at´eficaram cansados de tantas perguntas, Gracias! • Ao Dr. Luca Pasquini, por ter me convidado a participar da discuss˜ao da meta- licidade em estrelas gigantes com planetas, que deu como resultado uma linda e relevante publicac¸˜ao. Foi um prazer fazer parte dessa pesquisa e aprender sobre a organizac¸˜ao e discuss˜ao do trabalho em grupo. • A` professora Daniela Lazzaro por as inumer´aveis caronas e por compartilhar comigo tantas conversas sobre as diversas tarefas e responsabilidades que fazem parte da vida astronˆomica. • Ao grupo de dinˆamica do Dr. Othon Winter da UNESP, pelo trabalho em colaborac¸˜ao em uma ´area completamente nova para mim. • A todos meus colegas e amigos do ON que foram (´es˜ao) t˜ao importantes durante estes anos de dedicac¸˜ao `atese. Sou muito grata pela ajuda e carinho recebido seja no cursado das aulas, nos semin´arios ou nas horas de lazer. Particularmente agradec¸o a Aldinˆez, Vinicius, Manu, e Antonio que me aguentaram na etapa final com a famosa TPT (tens˜ao pr´etese). • A meus amigos e colegas do IAC, particularmente a Ren´e, Pablo e Santiago. Vocˆes foram minha fam´ılia em Tenerife, minha fam´ılia colombiana que sempre levarei no meu corac¸˜ao. • A` Dra. Natalia Drake, por todas suas dicas e ensinamentos na determinac¸˜ao de abundˆancias via s´ıntesis espectral; a sua ajuda foi muito importante para analizar os espectros das estrelas CoRoT’s. • As` organizac¸˜oes e intituc¸˜oes como a Uni˜ao Internacional de Astronomia (IAU), o Observat´orio do Vaticano, o Centro de Ciˆencia de Spitzer (SSC), a Socie- dade de Astronomia Brasileira (SAB) entre outras, que me permitiram assistir a reuni˜oes cient´ıficas de alto n´ıvel das quais aprendi muito e tive a possibilidade vii de conhecer os rostos atr´as de cada “paper”. Estas reuni˜oes me deram a opor- tunidade de fazer contatos de trabalho e conhecer pessoas maravilhosas de todo lugar do mundo. • Aos professores, amigos e colegas que conheci em congressos e escolas que enriqueceram minha vida profissional e pessoal. • A Roberto e Cinthia que tiveram o dificil´ıssimo e ´arduo trabalho de corrigir as diferentes vers˜oes desta tese escrita em portuguˆes por uma hispano-parlante. • Ao DTIN, mil vezes obrigada por me ajudar sempre que precisei. Particular- mente gostaria de agradecer a Marcio, Renato e Eduardo por a sua efetividade e energia sempre t˜ao positiva. • Ao meus amigos de toda a vida, los amichigos, e do OAC que torceram por mim desde C´ordoba. Gracias por el cari˜no y apoyo mandado en cada e-mail y cada visita. • As minhas colegas de casa pela paciˆencia, companheirismo e compreens˜ao, sa- bendo entender o lugar que a pesquisa ocupa na minha vida, obrigada mesmo!. • Ao Brasil por me dar a oportunidade de estudar aqui e conhecer este povo ma- ravilhoso que me fez sentir como na minha casa (tirando a ´epoca da copa do mundo). • Por ´ultimo, mas primeiros no meu pensamento, agradec¸o a minha fam´ılia pelo apoio contin´uo e incondicional. Sei que n˜ao foi f´acil no comec¸o entender e acei- tar a minha ausˆencia, mas com o tempo, ao ver-me satisfeita com meu trabalho e minha escolha, fico feliz que foram vocˆes os que me incentivaram ainda mais em seguir o caminho da minha vocac¸˜ao. viii Resumo ix O tema central desta tese ´ea evoluc¸˜ao global de discos circunstelares em estrelas de baixa massa desde a etapa protoplanet´aria at´ea debris atrav´es de uma an´alise no in- fravermelho. Estudamos tamb´em nesta tese mais um tema, a composic¸˜ao qu´ımica das estrelas com planetas e a sua relac¸˜ao com a formac¸˜ao planet´aria. Ambos temas dispa- res a priori, no entanto conseguimos encontrar o nexo entre eles. Nossa contribuic¸˜ao principal est´acentrada na caracterizac¸˜ao da evoluc¸˜ao dos discos debris mediante o uso de um ´unico diagrama constru´ıdo com fluxos em 12, 24 e 70 µm observados princi- palmente pelo sat´elite Spitzer.
Recommended publications
  • Université De Montréal Relevé Polarimétrique D'étoiles Candidates
    Université de Montréal Relevé polarimétrique d’étoiles candidates pour des disques de débris par Amélie Simon Département de physique Faculté des arts et des sciences Mémoire présenté à la Faculté des études supérieures en vue de l’obtention du grade de Maître ès sciences (M.Sc.) en physique Août, 2010 c Amélie Simon, 2010 Université de Montréal Faculté des études supérieures Ce mémoire intitulé: Relevé polarimétrique d’étoiles candidates pour des disques de débris présenté par: Amélie Simon a été évalué par un jury composé des personnes suivantes: Serge Demers, président-rapporteur Pierre Bastien, directeur de recherche Gilles Fontaine, membre du jury Mémoire accepté le: Sommaire Le relevé DEBRIS est effectué par le télescope spatial Herschel. Il permet d’échantillonner les disques de débris autour d’étoiles de l’environnement solaire. Dans la première partie de ce mémoire, un relevé polarimétrique de 108 étoiles des candidates de DEBRIS est présenté. Utilisant le polarimètre de l’Observatoire du Mont-Mégantic, des observations ont été effec- tuées afin de détecter la polarisation due à la présence de disques de débris. En raison d’un faible taux de détection d’étoiles polarisées, une analyse statistique a été réalisée dans le but de comparer la polarisation d’étoiles possédant un excès dans l’infrarouge et la polarisation de celles n’en possédant pas. Utilisant la théorie de diffusion de Mie, un modèle a été construit afin de prédire la polarisation due à un disque de débris. Les résultats du modèle sont cohérents avec les observations. La deuxième partie de ce mémoire présente des tests optiques du polarimètre POL-2, construit à l’Université de Montréal.
    [Show full text]
  • Hubble Space Telescope Observer’S Guide Winter 2021
    HUBBLE SPACE TELESCOPE OBSERVER’S GUIDE WINTER 2021 In 2021, the Hubble Space Telescope will celebrate 31 years in operation as a powerful observatory probing the astrophysics of the cosmos from Solar system studies to the high-redshift universe. The high-resolution imaging capability of HST spanning the IR, optical, and UV, coupled with spectroscopic capability will remain invaluable through the middle of the upcoming decade. HST coupled with JWST will enable new innovative science and be will be key for multi-messenger investigations. Key Science Threads • Properties of the huge variety of exo-planetary systems: compositions and inventories, compositions and characteristics of their planets • Probing the stellar and galactic evolution across the universe: pushing closer to the beginning of galaxy formation and preparing for coordinated JWST observations • Exploring clues as to the nature of dark energy ACS SBC absolute re-calibration (Cycle 27) reveals 30% greater • Probing the effect of dark matter on the evolution sensitivity than previously understood. More information at of galaxies http://www.stsci.edu/contents/news/acs-stans/acs-stan- • Quantifying the types and astrophysics of black holes october-2019 of over 7 orders of magnitude in size WFC3 offers high resolution imaging in many bands ranging from • Tracing the distribution of chemicals of life in 2000 to 17000 Angstroms, as well as spectroscopic capability in the universe the near ultraviolet and infrared. Many different modes are available for high precision photometry, astrometry, spectroscopy, mapping • Investigating phenomena and possible sites for and more. robotic and human exploration within our Solar System COS COS2025 initiative retains full science capability of COS/FUV out to 2025 (http://www.stsci.edu/hst/cos/cos2025).
    [Show full text]
  • • Context. Young Exoplanetary Systems with Ages 600 Ma (I.E. Hyades-Like Or Younger) Can Provide Constraints on the Time Scal
    • Context. Young exoplanetary systems with ages 600 Ma (i.e. Hyades-like or younger) can provide constraints on the time scale and mechanism of planet formation, and on the planet evolution (orbital migration, late heavy bombardment...). Apart from the very young “planet” candidates found by direct imaging (around e.g. HR 8799, 2M1207-39 or AB Pic), some young planet candidates have been found with the radial velocity method, such as HD 70573b (Setiawan et al. 2007) in the Hercules-Lyra subgroup of the Local Association or the controversial TW Hya b (Setiawan et al. 2008). [left, top: histogram of planet ages, from Joergens (2009, ASTROCAM school)] • Aims. We search for bright Hipparcos stars with radial-velocity planets that are member candidates in young moving groups (Montes et al. 2001), such as the Hyades, IC 2391, Ursa Majoris and Castor superclusters and the Local Association ( = 100-600 Ma), and very young moving groups like Pictoris or TW Hydrae ( < 100 Ma). Generally, these stars are discarded from accurate radial-velocity searches based on activity indicators, but there might be young stars that passed the rejection filter (e.g. HD 81040, ~ 700 Ma; Sozzetti et al. 2006). • Methods. On 2009 Sep 1, the Extrasolar Planets Encyclopaedia (exoplanet.eu) tabulated 346 planet candidates in 295 planetary systems detected by radial velocity (35 multiple planet systems). Of them, 228 have Hipparcos stars as host stars. We have computed Galactocentric space velocities UVW derived from star coordinates, proper motions, and parallactic distances (from van Leeuwen 2007), and systemic radial velocities, Vr (), from a number of works, including Nordström et al.
    [Show full text]
  • 3. Extrasolar Planets How Planets Were Discovered in the Solar System
    3. Extrasolar Planets How planets were discovered in the solar system Many are bright enough to see with the naked eye! More distant planets are fainter (scattered light flux - 4 ∝ apl ) and were discovered by imaging the sky at different times and looking for fast-moving things which must be relatively nearby (Kuiper belt objects and asteroids etc are still discovered in this way) but People are still some (e.g., Neptune) were predicted based on searching for planet X perturbations to the orbit of known planets in the solar system (e.g., Gaudi & Bloom Problem for detecting planets is that there is a lot of 2005 say Gaia will area of sky the planets could be hiding in, so narrow detect 1M out to searches to ecliptic planet (although tenth planet J 2000AU) has i=450) and use knowledge of dynamics to predict planet locations Can we do the same thing in extra-solar systems? Extra-solar planet Not quite so easily! The geometry of the problem is SS planet different, which means that: Earth • you don’t get a continuous motion across the sky • although we have narrowed down the region where the planet can be • but the planet is very far away and so it is faint, scattered light flux -2 -2 ∝ d* apl where d* is measured in pc (1pc=206,265AU) • which is compounded by the fact that it is close to a very bright star So how do we detect extrasolar planets? Mostly using indirect detection techniques: Effect on motion of parent star • Astrometric wobble • Timing shifts • Doppler wobble method Effect on flux we detect from parent star • Planetary transits
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Multi-Wavelength Modeling of the Spatially Resolved Debris Disk of HD 107146
    A&A 533, A132 (2011) Astronomy DOI: 10.1051/0004-6361/201015910 & c ESO 2011 Astrophysics Multi-wavelength modeling of the spatially resolved debris disk of HD 107146 S. Ertel1,S.Wolf1, S. Metchev2,G.Schneider3,J.M.Carpenter4,M.R.Meyer5, L. A. Hillenbrand4, and M. D. Silverstone6 1 Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany e-mail: [email protected] 2 Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800, USA 3 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 4 Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA 5 Institute for Astronomy, ETH Zürich, Wolfgang-Pauli-Straße 27, 8093 Zürich, Switzerland 6 Department of Physics & Astronomy, University of Alabama, 326 Gallalee, Tuscaloosa, AL 35487-0324, USA Received 12 October 2010 / Accepted 1 July 2011 ABSTRACT Aims. We aim to constrain the location, composition, and dynamical state of planetesimal populations and dust around the young, sun-like (G2 V) star HD 107146. Methods. We consider coronagraphic observations obtained with the Advanced Camera for Surveys (HST/ACS) onboard the Hubble Space Telescope (HST) in broad V (λc ≈ 0.6 μm) and broad I (λc ≈ 0.8 μm) filters, a resolved 1.3 mm map obtained with the Combined Array for Research in Millimeter-wave Astronomy (CARMA), Spitzer/IRS low resolution spectra in the range of 7.6 μm to 37.0 μm, and the spectral energy distribution (SED) of the object at wavelengths ranging from 3.5 μmto3.1 mm.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Arxiv:0705.4290V2 [Astro-Ph] 23 Aug 2007
    DRAFT VERSION NOVEMBER 11, 2018 Preprint typeset using LATEX style emulateapj v. 08/13/06 THE GEMINI DEEP PLANET SURVEY – GDPS∗ DAVID LAFRENIÈREA,RENÉ DOYONA , CHRISTIAN MAROISB ,DANIEL NADEAUA, BEN R. OPPENHEIMERC,PATRICK F. ROCHED , FRANÇOIS RIGAUTE, JAMES R. GRAHAMF ,RAY JAYAWARDHANAG,DOUG JOHNSTONEH,PAUL G. KALASF ,BRUCE MACINTOSHB, RENÉ RACINEA Draft version November 11, 2018 ABSTRACT We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope and angular differential imaging was used to suppress the speckle noise of the central star. Detection limits for the 85 stars observed are presented, along with a list of all faint point sources detected around them. Typically, the observations are sensitive to angular separations beyond 0.5′′ with 5σ contrast sensitivities in magnitude difference at 1.6 µm of 9.5 at 0.5′′, 12.9 at 1′′, 15.0 at 2′′, and 16.5 at 5′′. For the typical target of the survey, a 100 Myr old K0 star located 22 pc from the Sun, the observations are sensitive enough to detect planets more massive than 2 MJup with a projected separation in the range 40–200 AU. Depending on the age, spectral type, and distance of the target stars, the detection limit can be as low as 1 MJup. Second epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are∼ unrelated background stars. A detailed statistical analysis of the survey results, yielding upper limits on the fractions of stars with giant planet or low mass brown dwarf companions, is presented.
    [Show full text]
  • Phd Thesis: Search for Planets Around Young Stars with the Radial Velocity Technique
    Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by: Diplom-Physiker Patrick Weise Born in Bremen Oral examination: October 13, 2010 Search for planets around young stars with the radial velocity technique Referees: Prof. Dr. Thomas Henning Prof. Dr. Immo Appenzeller Suche nach Planeten um junge Sterne mit der Radialgeschwindigkeitsmethode Zusammenfassung Riesenplaneten entstehen in zirkumstellaren Scheiben um junge Sterne. Es existieren zwei verschiedene theroretische Beschreibungen, wonach Riesenplaneten durch grav- itative Instabilität oder Kern-Akkretion entstehen. Beide Modelle können auch zusam- men unter bestimmten Bedingungen zutreffen, aber die Kern-Akkretion scheint der dominante Prozess zu sein. Bisher wurde jedoch die Planetenentstehung noch nicht direkt beobachtet. Aus diesem Grund soll in dieser Arbeit nach sub-stellaren Be- gleitern um junge Sterne (1–100 Mjahre) gesucht werden, da die Eigenschaften junger Planeten wichtige Hinweise auf die Prozesse der Planetenentstehung geben können. In dieser Arbeit wurden echelle Spectren von 100 jungen Sternen aufgenommen und deren Eigenschaften charakterisiert. Thie Radialgeschwindigkeit wurde durch Kreuz- Korrelation der Spektren mit Vorlagen in MACS gewonnen. Weiterhin wurde die stel- lare Aktivität durch die Analyse des Linien Bisektors und anderer Indikatoren, charak- terisiert. FÃijr 12 der untersuchten Sterne ist die Variation der Radialgeschwindigkeit durch die Modulation der stellaren Aktivität mit der Rotationsperiode gegeben. Weit- erhin wurden sechs Riesenplaneten und ein Brauner Zwerg im Orbit um junge Sterne (2–90 Myr) gefunden. Dennoch ist die Anzahl der gefundenen sub-stellaren Begleiter zu wenig und das Alter der Sterne zu ungenau um Aussagen zu der Entstehung von Planeten zu treffen.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Frequency of Debris Disks Around Solar-Type Stars: First Results from a Spitzer Mips Survey G
    The Astrophysical Journal, 636:1098–1113, 2006 January 10 A # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. FREQUENCY OF DEBRIS DISKS AROUND SOLAR-TYPE STARS: FIRST RESULTS FROM A SPITZER MIPS SURVEY G. Bryden,1 C. A. Beichman,2 D. E. Trilling,3 G. H. Rieke,3 E. K. Holmes,1,4 S. M. Lawler,1 K. R. Stapelfeldt,1 M. W. Werner,1 T. N. Gautier,1 M. Blaylock,3 K. D. Gordon,3 J. A. Stansberry,3 and K. Y. L. Su3 Received 2005 August 1; accepted 2005 September 12 ABSTRACT We have searched for infrared excesses around a well-defined sample of 69 FGK main-sequence field stars. These stars were selected without regard to their age, metallicity, or any previous detection of IR excess; they have a median age of 4 Gyr. We have detected 70 m excesses around seven stars at the 3 confidence level. This extra emission is produced by cool material (<100 K) located beyond 10 AU, well outside the ‘‘habitable zones’’ of these systems and consistent with the presence of Kuiper Belt analogs with 100 times more emitting surface area than in our own planetary system. Only one star, HD 69830, shows excess emission at 24 m, corresponding to dust with temper- À3 atures k300 K located inside of 1 AU. While debris disks with Ldust /L? 10 are rare around old FGK stars, we find À4 À5 that the disk frequency increases from 2% Æ 2% for Ldust /L? 10 to 12% Æ 5% for Ldust /L? 10 .
    [Show full text]
  • Optical Counterparts of ROSAT X-Ray Sources in Two Selected Fields at Low
    Astronomy & Astrophysics manuscript no. sbg˙comsge˙ed c ESO 2018 October 16, 2018 Optical counterparts of ROSAT X-ray sources in two selected fields at low vs. high Galactic latitudes J. Greiner1, G.A. Richter2 1 Max-Planck-Institut f¨ur extraterrestrische Physik, 85740 Garching, Germany 2 Sternwarte Sonneberg, 96515 Sonneberg, Germany Received 14 October 2013 / Accepted 12 August 2014 ABSTRACT Context. The optical identification of large number of X-ray sources such as those from the ROSAT All-Sky Survey is challenging with conventional spectroscopic follow-up observations. Aims. We investigate two ROSAT All-Sky Survey fields of size 10◦× 10◦ each, one at galactic latitude b = 83◦ (26 Com), the other at b = –5◦ (γ Sge), in order to optically identify the majority of sources. Methods. We used optical variability, among other more standard methods, as a means of identifying a large number of ROSAT All- Sky Survey sources. All objects fainter than about 12 mag and brighter than about 17 mag, in or near the error circle of the ROSAT positions, were tested for optical variability on hundreds of archival plates of the Sonneberg field patrol. Results. The present paper contains probable optical identifications of altogether 256 of the 370 ROSAT sources analysed. In partic- ular, we found 126 AGN (some of them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant and 1 planetary nebula.
    [Show full text]