CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University Of

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University Of CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 13 February 2021 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic preliminary notation, both mathematical and logistical. Sec- tion 2 describes what algebraic geometry is assumed of the reader, and gives a few conventions that will be assumed here. Sections 3 and 4 give a few more details on schematic denseness, associated points, rational maps, rational sections of line sheaves, and how the above relate to the relation between Cartier divisors and line sheaves. Sections 5 and 6 discuss the field of definition of a closed subscheme and of a variety, respectively. Section 7 sets the basic notation and gives some fundamental results in number theory. The remaining sections of this chapter describe some more specialized topics in algebraic geometry that will prove useful later: Kodaira's lemma in Section 8, and descent in Section 9. x1. General notation The symbols Z , Q , R , and C stand for the ring of rational integers and the fields of rational numbers, real numbers, and complex numbers, respectively. The symbol N sig- nifies the natural numbers, which in this book start at zero: N = f0; 1; 2; 3;::: g . When it is necessary to refer to the positive integers, we use subscripts: Z>0 = f1; 2; 3;::: g . Similarly, R≥0 stands for the set of nonnegative real numbers, etc. ` ` The set of extended real numbers is the set R := {−∞} R f1g . It carries the obvious ordering. ¯ ¯ If k is a field, then k denotes an algebraic closure of k . If α 2 k , then Irrα,k(X) is the (unique) monic irreducible polynomial f 2 k[X] for which f(α) = 0 . Unless otherwise specified, the wording almost all will mean all but finitely many. Numbers (such as Section 2, Theorem 2.3, or (2.3.5)) refer to the chapter in which they occur, unless they are preceded by a number or letter and a colon in bold-face type (e.g., Section 3:2, Theorem A:2.5, or (7:2.3.5)), in which case they refer to the chapter or appendix indicated by the bold-face number or letter, respectively. 1 2 PAUL VOJTA x2. Conventions and basic results in algebraic geometry It is assumed that the reader is familiar with the basics of algebraic geometry as given, e.g., in the first three chapters of [H 2], especially the first two. Note, however, that some conventions are different here. This book will primarily use the language of schemes, rather than of varieties. The reader who prefers the more elementary approach of varieties, however, will often be able to mentally substitute the word variety for scheme without much loss, especially in the first few chapters. With the exception of Appendix B, all schemes are assumed to be separated. Usu- ally, schemes will also be assumed to be of finite type over some base scheme. We often omit Spec when it is clear from the context; e.g., X(A) means X(Spec A) n n when A is a ring, PA means PSpec A , and X ×A B means X ×Spec A Spec B when A and B are rings. The following definition gives slightly different names for some standard objects. Definition 2.1. Let X be a scheme. Then a vector sheaf on X is a locally free sheaf of OX -modules on X of constant finite rank. Its rank is the value of that constant rank (if X 6= ; ). A morphism of vector sheaves is a morphism of OX -modules on X .A line sheaf is a vector sheaf of rank 1 . A vector sheaf F of rank r on X can be described concretely by giving an open ∼ r cover fUigi2I of X and isomorphisms φi : F ! O for all i 2 I such that for all Ui Ui i; j 2 I , the automorphism −1 r r φi ◦ φ : O ! O Ui\Uj j Ui\Uj Ui\Uj Ui\Uj is given by an element of GLr(Γ(Ui \ Uj; OX )) . If G is another vector sheaf on X , ∼ s with corresponding open cover fVjgj2J and isomorphisms j : G ! O , then a Vj Vj morphism of vector sheaves F ! G is a morphism ρ: F ! G of sheaves such that, for all i 2 I and all j 2 J , the morphism Or ! Os corresponding to ρ Ui\Vj Ui\Vj Ui\Vj via the isomorphisms φi and j is a linear homomorphism of OUi\Vj -modules. A line sheaf is also called an invertible sheaf by many authors. Varieties Not all authors use the same definition of variety. Here we use the following definition. Definition 2.2. Let k be a field. A variety over k , also called a k-variety, is an integral scheme, of finite type (and separated) over Spec k . If it is also proper over k , then we say it is complete.A curve is a variety of dimension 1 . A morphism of k-varieties is a morphism of schemes over Spec k .A subvariety (resp. open subvariety, closed subvariety) of a given variety over k is an integral subscheme (resp. open integral subscheme, closed integral subscheme) of that variety (with induced map to Spec k ). Note that, since k is not assumed to be algebraically closed, the set of closed ¯ ¯ points of a variety X over k is the set X(k) , modulo the action of Autk(k) . Also, the residue field k(P ) for a closed point P will in general be a finite extension of k . PRELIMINARY MATERIAL 3 Remark 2.3. We have not assumed a variety to be geometrically integral. An advantage of this choice is that every irreducible closed subset of a variety will again be a variety, so that there is a natural one-to-one correspondence between the set of points of a variety and its set of subvarieties. This choice also agrees with the general philosophy that definitions should be weak. Since integrality is an absolute definition, if X is a variety over a number field k , then it is also a variety over any smaller number field k0 , since one can compose X ! Spec k with the map Spec k ! Spec k0 to get X to be a scheme over k0 . The latter is discussed more in Section 6. In addition, we have (not just for regular field extensions): Proposition 2.4. The association X 7! K(X) induces an arrow-reversing equivalence of categories between the category of varieties and dominant rational maps over k , and the category of finitely-generated field extensions of k . Proof. The proof of ([H 2], I Thm. 4.4) extends directly to the present case; see also ([EGA], I 7.1.16). Remark 2.5. Let k ⊆ L be fields. Then, for varieties (or schemes) X over k , the sets X(L) satisfy the following basic properties: (a). An(L) = Ln in the obvious way. A similar statement holds for Pn(L). (b). A morphism f : X1 ! X2 of schemes over k induces a natural map fL : X1(L) ! X2(L) : (c). If f is an immersion, then fL is injective. (d). If f is surjective and L is algebraically closed, then fL is surjective. (e). Since the field L has no nilpotents, Xred(L) = X(L). (f). An inclusion L1 ⊆ L2 of fields induces a natural injection X(L1) ,! X(L2). (g). If k0 is an extension field of k such that both k and L are contained in some larger field, then for schemes X over k there is a natural injection 0 0 X(L) ,! (X ×k k )(k L). Note, however, that if L is not algebraically closed, then fL in part (d) need not be surjective; consider for example f : 1 ! 1 defined by z 7! z2 . AQ AQ We note that cohomology is geometric in nature: Let X be a scheme over k , let F be a quasi-coherent sheaf on X , let L be a field containing k , let XL = X ×k L , ∗ let f : XL ! X be the projection morphism, and let FL = f F . Then, by the fact that cohomology commutes with flat base extension ([H 2], III Prop. 9.3), i ∼ i H (XL; FL) = H (X; F ) ⊗k L for all i ≥ 0 . Later chapters of the book will work extensively with schemes of finite type over the ring of integers of a number field. Such schemes have many of the same properties as varieties over a field. We describe one set of such properties here, generalizing a basic result on dimension in ([H], I Thm. 1.8A). 4 PAUL VOJTA Proposition 2.6. Let f : X ! Y be a morphism of finite type, where X and Y are noetherian integral schemes and Y is regular of dimension 1 . Assume that (i) Y has infinitely many points, or (ii) f is proper. Then: (a). For all closed points x of X , the point y := f(x) is a closed point of Y , and the induced extension k(x)=k(y) of residue fields is a finite extension. (b). dim X = tr: deg K(X)=K(Y ) + 1 ; and (c). X is catenary and equicodimensional; in particular, (2.6.1) dim fxg + codim(x; X) = dim X for all points x 2 X . (Here equicodimensional means that all closed points of X have the same codimension in X .) Proof. After passing to an open affine, we may assume that Y is affine, say Y = Spec A.
Recommended publications
  • Arxiv:1108.5351V3 [Math.AG] 26 Oct 2012 ..Rslso D-Mod( on Results Introduction the to 0.2
    ON SOME FINITENESS QUESTIONS FOR ALGEBRAIC STACKS VLADIMIR DRINFELD AND DENNIS GAITSGORY Abstract. We prove that under a certain mild hypothesis, the DG category of D-modules on a quasi-compact algebraic stack is compactly generated. We also show that under the same hypothesis, the functor of global sections on the DG category of quasi-coherent sheaves is continuous. Contents Introduction 3 0.1. Introduction to the introduction 3 0.2. Results on D-mod(Y) 4 0.3. Results on QCoh(Y) 4 0.4. Ind-coherent sheaves 5 0.5. Contents of the paper 7 0.6. Conventions, notation and terminology 10 0.7. Acknowledgments 14 1. Results on QCoh(Y) 14 1.1. Assumptions on stacks 14 1.2. Quasi-coherent sheaves 15 1.3. Direct images for quasi-coherent sheaves 18 1.4. Statements of the results on QCoh(Y) 21 2. Proof of Theorems 1.4.2 and 1.4.10 23 2.1. Reducing the statement to a key lemma 23 2.2. Easy reduction steps 24 2.3. Devissage 24 2.4. Quotients of schemes by algebraic groups 26 2.5. Proof of Proposition 2.3.4 26 2.6. Proof of Theorem 1.4.10 29 arXiv:1108.5351v3 [math.AG] 26 Oct 2012 3. Implications for ind-coherent sheaves 30 3.1. The “locally almost of finite type” condition 30 3.2. The category IndCoh 32 3.3. The coherent subcategory 39 3.4. Description of compact objects of IndCoh(Y) 39 3.5. The category Coh(Y) generates IndCoh(Y) 42 3.6.
    [Show full text]
  • CHAPTER 0 PRELIMINARY MATERIAL Paul
    CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 18 February 1998 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic preliminary notation, both mathematical and logistical. Sec- tion 2 describes what algebraic geometry is assumed of the reader, and gives a few conventions that will be assumed here. Section 3 gives a few more details on the field of definition of a variety. Section 4 does the same as Section 2 for number theory. The remaining sections of this chapter give slightly longer descriptions of some topics in algebraic geometry that will be needed: Kodaira’s lemma in Section 5, and descent in Section 6. x1. General notation The symbols Z , Q , R , and C stand for the ring of rational integers and the fields of rational numbers, real numbers, and complex numbers, respectively. The symbol N sig- nifies the natural numbers, which in this book start at zero: N = f0; 1; 2; 3;::: g . When it is necessary to refer to the positive integers, we use subscripts: Z>0 = f1; 2; 3;::: g . Similarly, R stands for the set of nonnegative real numbers, etc. ¸0 ` ` The set of extended real numbers is the set R := f¡1g R f1g . It carries the obvious ordering. ¯ ¯ If k is a field, then k denotes an algebraic closure of k . If ® 2 k , then Irr®;k(X) is the (unique) monic irreducible polynomial f 2 k[X] for which f(®) = 0 . Unless otherwise specified, the wording almost all will mean all but finitely many.
    [Show full text]
  • Boundary and Shape of Cohen-Macaulay Cone
    BOUNDARY AND SHAPE OF COHEN-MACAULAY CONE HAILONG DAO AND KAZUHIKO KURANO Abstract. Let R be a Cohen-Macaulay local domain. In this paper we study the cone of Cohen-Macaulay modules inside the Grothendieck group of finitely generated R-modules modulo numerical equivalences, introduced in [3]. We prove a result about the boundary of this cone for Cohen-Macaulay domain admitting de Jong’s alterations, and use it to derive some corollaries on finite- ness of isomorphism classes of maximal Cohen-Macaulay ideals. Finally, we explicitly compute the Cohen-Macaulay cone for certain isolated hypersurface singularities defined by ξη − f(x1; : : : ; xn). 1. Introduction Let R be a Noetherian local ring and G0(R) the Grothendieck group of finitely generated R-modules. Using Euler characteristic of perfect complexes with finite length homologies (a generalized version of Serre’s intersection multiplicity pair- ings), one could define the notion of numerical equivalence on G0(R) as in [17]. See Section 2 for precise definitions. When R is the local ring at the vertex of an affine cone over a smooth projective variety X, this notion can be deeply related to that of numerical equivalences on the Chow group of X as in [17] and [20]. Let G0(R) be the Grothendieck group of R modulo numerical equivalences. A simple result in homological algebra tells us that if M is maximal Cohen- Macaulay (MCM), the Euler characteristic function will always be positive. Thus, maximal Cohen-Macaulay modules all survive in G0(R), and it makes sense to talk about the cone of Cohen-Macaulay modules inside G (R) : 0 R X C (R) = [M] ⊂ G (R) : CM R≥0 0 R M:MCM The definition of this cone and some of its basic properties was given in [3].
    [Show full text]
  • Foundations of Algebraic Geometry Class 13
    FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 13 RAVI VAKIL CONTENTS 1. Some types of morphisms: quasicompact and quasiseparated; open immersion; affine, finite, closed immersion; locally closed immersion 1 2. Constructions related to “smallest closed subschemes”: scheme-theoretic image, scheme-theoretic closure, induced reduced subscheme, and the reduction of a scheme 12 3. More finiteness conditions on morphisms: (locally) of finite type, quasifinite, (locally) of finite presentation 16 We now define a bunch of types of morphisms. (These notes include some topics dis- cussed the previous class.) 1. SOME TYPES OF MORPHISMS: QUASICOMPACT AND QUASISEPARATED; OPEN IMMERSION; AFFINE, FINITE, CLOSED IMMERSION; LOCALLY CLOSED IMMERSION In this section, we'll give some analogues of open subsets, closed subsets, and locally closed subsets. This will also give us an excuse to define affine and finite morphisms (closed immersions are a special case). It will also give us an excuse to define some im- portant special closed immersions, in the next section. In section after that, we'll define some more types of morphisms. 1.1. Quasicompact and quasiseparated morphisms. A morphism f : X Y is quasicompact if for every open affine subset U of Y, f-1(U) is quasicompact. Equivalently! , the preimage of any quasicompact open subset is quasicom- pact. We will like this notion because (i) we know how to take the maximum of a finite set of numbers, and (ii) most reasonable schemes will be quasicompact. 1.A. EASY EXERCISE. Show that the composition of two quasicompact morphisms is quasicompact. 1.B. EXERCISE. Show that any morphism from a Noetherian scheme is quasicompact.
    [Show full text]
  • 1 Affine Varieties
    1 Affine Varieties We will begin following Kempf's Algebraic Varieties, and eventually will do things more like in Hartshorne. We will also use various sources for commutative algebra. What is algebraic geometry? Classically, it is the study of the zero sets of polynomials. We will now fix some notation. k will be some fixed algebraically closed field, any ring is commutative with identity, ring homomorphisms preserve identity, and a k-algebra is a ring R which contains k (i.e., we have a ring homomorphism ι : k ! R). P ⊆ R an ideal is prime iff R=P is an integral domain. Algebraic Sets n n We define affine n-space, A = k = f(a1; : : : ; an): ai 2 kg. n Any f = f(x1; : : : ; xn) 2 k[x1; : : : ; xn] defines a function f : A ! k : (a1; : : : ; an) 7! f(a1; : : : ; an). Exercise If f; g 2 k[x1; : : : ; xn] define the same function then f = g as polynomials. Definition 1.1 (Algebraic Sets). Let S ⊆ k[x1; : : : ; xn] be any subset. Then V (S) = fa 2 An : f(a) = 0 for all f 2 Sg. A subset of An is called algebraic if it is of this form. e.g., a point f(a1; : : : ; an)g = V (x1 − a1; : : : ; xn − an). Exercises 1. I = (S) is the ideal generated by S. Then V (S) = V (I). 2. I ⊆ J ) V (J) ⊆ V (I). P 3. V ([αIα) = V ( Iα) = \V (Iα). 4. V (I \ J) = V (I · J) = V (I) [ V (J). Definition 1.2 (Zariski Topology). We can define a topology on An by defining the closed subsets to be the algebraic subsets.
    [Show full text]
  • ON the FIELD of DEFINITION of P-TORSION POINTS on ELLIPTIC CURVES OVER the RATIONALS
    ON THE FIELD OF DEFINITION OF p-TORSION POINTS ON ELLIPTIC CURVES OVER THE RATIONALS ALVARO´ LOZANO-ROBLEDO Abstract. Let SQ(d) be the set of primes p for which there exists a number field K of degree ≤ d and an elliptic curve E=Q, such that the order of the torsion subgroup of E(K) is divisible by p. In this article we give bounds for the primes in the set SQ(d). In particular, we show that, if p ≥ 11, p 6= 13; 37, and p 2 SQ(d), then p ≤ 2d + 1. Moreover, we determine SQ(d) for all d ≤ 42, and give a conjectural formula for all d ≥ 1. If Serre’s uniformity problem is answered positively, then our conjectural formula is valid for all sufficiently large d. Under further assumptions on the non-cuspidal points on modular curves that parametrize those j-invariants associated to Cartan subgroups, the formula is valid for all d ≥ 1. 1. Introduction Let K be a number field of degree d ≥ 1 and let E=K be an elliptic curve. The Mordell-Weil theorem states that E(K), the set of K-rational points on E, can be given the structure of a finitely ∼ R generated abelian group. Thus, there is an integer R ≥ 0 such that E(K) = E(K)tors ⊕ Z and the torsion subgroup E(K)tors is finite. Here, we will focus on the order of E(K)tors. In particular, we are interested in the following question: if we fix d ≥ 1, what are the possible prime divisors of the order of E(K)tors, for E and K as above? Definition 1.1.
    [Show full text]
  • NOTES on CARTIER and WEIL DIVISORS Recall: Definition 0.1. A
    NOTES ON CARTIER AND WEIL DIVISORS AKHIL MATHEW Abstract. These are notes on divisors from Ravi Vakil's book [2] on scheme theory that I prepared for the Foundations of Algebraic Geometry seminar at Harvard. Most of it is a rewrite of chapter 15 in Vakil's book, and the originality of these notes lies in the mistakes. I learned some of this from [1] though. Recall: Definition 0.1. A line bundle on a ringed space X (e.g. a scheme) is a locally free sheaf of rank one. The group of isomorphism classes of line bundles is called the Picard group and is denoted Pic(X). Here is a standard source of line bundles. 1. The twisting sheaf 1.1. Twisting in general. Let R be a graded ring, R = R0 ⊕ R1 ⊕ ::: . We have discussed the construction of the scheme ProjR. Let us now briefly explain the following additional construction (which will be covered in more detail tomorrow). L Let M = Mn be a graded R-module. Definition 1.1. We define the sheaf Mf on ProjR as follows. On the basic open set D(f) = SpecR(f) ⊂ ProjR, we consider the sheaf associated to the R(f)-module M(f). It can be checked easily that these sheaves glue on D(f) \ D(g) = D(fg) and become a quasi-coherent sheaf Mf on ProjR. Clearly, the association M ! Mf is a functor from graded R-modules to quasi- coherent sheaves on ProjR. (For R reasonable, it is in fact essentially an equiva- lence, though we shall not need this.) We now set a bit of notation.
    [Show full text]
  • MAPPING STACKS and CATEGORICAL NOTIONS of PROPERNESS Contents 1. Introduction 2 1.1. Introduction to the Introduction 2 1.2
    MAPPING STACKS AND CATEGORICAL NOTIONS OF PROPERNESS DANIEL HALPERN-LEISTNER AND ANATOLY PREYGEL Abstract. One fundamental consequence of a scheme being proper is that there is an algebraic space classifying maps from it to any other finite type scheme, and this result has been extended to proper stacks. We observe, however, that it also holds for many examples where the source is a geometric stack, such as a global quotient. In our investigation, we are lead naturally to certain properties of the derived category of a stack which guarantee that the mapping stack from it to any geometric finite type stack is algebraic. We develop methods for establishing these properties in a large class of examples. Along the way, we introduce a notion of projective morphism of algebraic stacks, and prove strong h-descent results which hold in the setting of derived algebraic geometry but not in classical algebraic geometry. Contents 1. Introduction 2 1.1. Introduction to the introduction2 1.2. Mapping out of stacks which are \proper enough"3 1.3. Techniques for establishing (GE) and (L)5 1.4. A long list of examples6 1.5. Comparison with previous results7 1.6. Notation and conventions8 1.7. Author's note 9 2. Artin's criteria for mapping stacks 10 2.1. Weil restriction of affine stacks 11 2.2. Deformation theory of the mapping stack 12 2.3. Integrability via the Tannakian formalism 16 2.4. Derived representability from classical representability 19 2.5. Application: (pGE) and the moduli of perfect complexes 21 3. Perfect Grothendieck existence 23 3.1.
    [Show full text]
  • Graduate Texts in Mathematics
    Graduate Texts in Mathematics Editorial Board S. Axler F.W. Gehring K.A. Ribet BOOKS OF RELATED INTEREST BY SERGE LANG Math Talks for Undergraduates 1999, ISBN 0-387-98749-5 Linear Algebra, Third Edition 1987, ISBN 0-387-96412-6 Undergraduate Algebra, Second Edition 1990, ISBN 0-387-97279-X Undergraduate Analysis, Second Edition 1997, ISBN 0-387-94841-4 Complex Analysis, Third Edition 1993, ISBN 0-387-97886 Real and Functional Analysis, Third Edition 1993, ISBN 0-387-94001-4 Algebraic Number Theory, Second Edition 1994, ISBN 0-387-94225-4 OTHER BOOKS BY LANG PUBLISHED BY SPRINGER-VERLAG Introduction to Arakelov Theory • Riemann-Roch Algebra (with William Fulton) • Complex Multiplication • Introduction to Modular Forms • Modular Units (with Daniel Kubert) • Fundamentals of Diophantine Geometry • Elliptic Functions • Number Theory III • Survey of Diophantine Geometry • Fundamentals of Differential Geometry • Cyclotomic Fields I and II • SL2(R) • Abelian Varieties • Introduction to Algebraic and Abelian Functions • Introduction to Diophantine Approximations • Elliptic Curves: Diophantine Analysis • Introduction to Linear Algebra • Calculus of Several Variables • First Course in Calculus • Basic Mathematics • Geometry: A High School Course (with Gene Murrow) • Math! Encounters with High School Students • The Beauty of Doing Mathematics • THE FILE • CHALLENGES Serge Lang Algebra Revised Third Edition Springer Serge Lang Department of Mathematics Yale University New Haven, CT 96520 USA Editorial Board S. Axler Mathematics Department F.W. Gehring K.A. Ribet San Francisco State Mathematics Department Mathematics Department University East Hall University of California, San Francisco, CA 94132 University of Michigan Berkeley USA Ann Arbor, MI 48109 Berkeley, CA 94720-3840 [email protected] USA USA [email protected].
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Cox Rings and Partial Amplitude Permalink https://escholarship.org/uc/item/7bs989g2 Author Brown, Morgan Veljko Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Cox Rings and Partial Amplitude by Morgan Veljko Brown A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, BERKELEY Committee in charge: Professor David Eisenbud, Chair Professor Martin Olsson Professor Alistair Sinclair Spring 2012 Cox Rings and Partial Amplitude Copyright 2012 by Morgan Veljko Brown 1 Abstract Cox Rings and Partial Amplitude by Morgan Veljko Brown Doctor of Philosophy in Mathematics University of California, BERKELEY Professor David Eisenbud, Chair In algebraic geometry, we often study algebraic varieties by looking at their codimension one subvarieties, or divisors. In this thesis we explore the relationship between the global geometry of a variety X over C and the algebraic, geometric, and cohomological properties of divisors on X. Chapter 1 provides background for the results proved later in this thesis. There we give an introduction to divisors and their role in modern birational geometry, culminating in a brief overview of the minimal model program. In chapter 2 we explore criteria for Totaro's notion of q-amplitude. A line bundle L on X is q-ample if for every coherent sheaf F on X, there exists an integer m0 such that m ≥ m0 implies Hi(X; F ⊗ O(mL)) = 0 for i > q.
    [Show full text]
  • THE GALOIS ACTION on DESSIN D'enfants Contents 1. Introduction 1 2. Background: the Absolute Galois Group 4 3. Background
    THE GALOIS ACTION ON DESSIN D'ENFANTS CARSON COLLINS Abstract. We introduce the theory of dessin d'enfants, with emphasis on how it relates to the absolute Galois group of Q. We prove Belyi's Theorem and show how the resulting Galois action is faithful on dessins. We also discuss the action on categories equivalent to dessins and prove its most powerful invariants for classifying orbits of the action. Minimal background in Galois theory or algebraic geometry is assumed, and we review those concepts which are necessary to this task. Contents 1. Introduction 1 2. Background: The Absolute Galois Group 4 3. Background: Algebraic Curves 4 4. Belyi's Theorem 5 5. The Galois Action on Dessins 6 6. Computing the Belyi Map of a Spherical Dessin 7 7. Faithfulness of the Galois Action 9 8. Cartographic and Automorphism Groups of a Dessin 10 9. Regular Dessins: A Galois Correspondence 13 Acknowledgments 16 References 16 1. Introduction Definition 1.1. A bigraph is a connected bipartite graph with a fixed 2-coloring into nonempty sets of black and white vertices. We refer to the edges of a bigraph as its darts. Definition 1.2. A dessin is a bigraph with an embedding into a topological surface such that its complement in the surface is a disjoint union of open disks, called the faces of the dessin. Dessin d'enfant, often abbreviated to dessin, is French for "child's drawing." As the definition above demonstrates, these are simple combinatorial objects, yet they have subtle and deep connections to algebraic geometry and Galois theory.
    [Show full text]
  • Introduction to Algebraic Geometry
    Introduction to Algebraic Geometry Jilong Tong December 6, 2012 2 Contents 1 Algebraic sets and morphisms 11 1.1 Affine algebraic sets . 11 1.1.1 Some definitions . 11 1.1.2 Hilbert's Nullstellensatz . 12 1.1.3 Zariski topology on an affine algebraic set . 14 1.1.4 Coordinate ring of an affine algebraic set . 16 1.2 Projective algebraic sets . 19 1.2.1 Definitions . 19 1.2.2 Homogeneous Nullstellensatz . 21 1.2.3 Homogeneous coordinate ring . 22 1.2.4 Exercise: plane curves . 22 1.3 Morphisms of algebraic sets . 24 1.3.1 Affine case . 24 1.3.2 Quasi-projective case . 26 2 The Language of schemes 29 2.1 Sheaves and locally ringed spaces . 29 2.1.1 Sheaves on a topological spaces . 29 2.1.2 Ringed space . 34 2.2 Schemes . 36 2.2.1 Definition of schemes . 36 2.2.2 Morphisms of schemes . 40 2.2.3 Projective schemes . 43 2.3 First properties of schemes and morphisms of schemes . 49 2.3.1 Topological properties . 49 2.3.2 Noetherian schemes . 50 2.3.3 Reduced and integral schemes . 51 2.3.4 Finiteness conditions . 53 2.4 Dimension . 54 2.4.1 Dimension of a topological space . 54 2.4.2 Dimension of schemes and rings . 55 2.4.3 The noetherian case . 57 2.4.4 Dimension of schemes over a field . 61 2.5 Fiber products and base change . 62 2.5.1 Sum of schemes . 62 2.5.2 Fiber products of schemes .
    [Show full text]