Food Dyes and Effects on Children: Problems & Solutions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Influence of Marination with Aromatic Herbs and Cold Pressed Oils On
foods Article Influence of Marination with Aromatic Herbs and Cold Pressed Oils on Black Angus Beef Meat 1 2, 2 2 2 Vasile-Gheorghe Vi¸san , Maria Simona Chi¸s * , Adriana Păucean , Vlad Mures, an , Andreea Pus, cas, , 2 3 4 2 1 Laura Stan , Dan Cristian Vodnar , Francisc Vasile Dulf , Dorin T, ibulcă , Bogdan Alin Vlaic , Iulian Eugen Rusu 2, Csaba Balasz Kadar 2 and Augustin Vlaic 1 1 Department of Fundamental Sciences, Faculty of Animal Science and Biotechnologies Cluj-Napoca, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănă¸sturStreet, 400372 Cluj-Napoca, Romania; [email protected] (V.-G.V.); [email protected] (B.A.V.); [email protected] (A.V.) 2 Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănă¸sturStreet, 400372 Cluj-Napoca, Romania; [email protected] (A.P.); [email protected] (V.M.); [email protected] (A.P.); [email protected] (L.S.); [email protected] (D.T, .); [email protected] (I.E.R.); [email protected] (C.B.K.) 3 Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănăs, tur Street, 400372 Cluj-Napoca, Romania; [email protected] 4 Department of Environmental and Plant Protection, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 3–5 Mănă¸sturStreet, 400372 Cluj-Napoca, Romania; [email protected] Citation: Vi¸san,V.-G.; Chi¸s,M.S.; * Correspondence: [email protected]; Tel.: +40-264-596384 P˘aucean,A.; Mures, an, V.; Pus, cas, , A.; Stan, L.; Vodnar, D.C.; Dulf, F.V.; Abstract: Beef aging is one of the most common methods used for improving its qualities. -
Artificial Food Colours and Children Why We Want to Limit and Label Foods Containing the ‘Southampton Six’ Food Colours on the UK Market Post-Brexit
Artificial food colours and children Why we want to limit and label foods containing the ‘Southampton Six’ food colours on the UK market post-Brexit November 2020 FIRST STEPS NUTRITIONArtificial food coloursTRUST and children: page Artificial food colours and children: Why we want to limit and label foods containing the‘Southampton Six’ food colours on the UK market post-Brexit November 2020 Published by First Steps Nutrition Trust. A PDF of this resource is available on the First Steps Nutrition Trust website. www.firststepsnutrition.org The text of this resource, can be reproduced in other materials provided that the materials promote public health and make no profit, and an acknowledgement is made to First Steps Nutrition Trust. This resource is provided for information only and individual advice on diet and health should always be sought from appropriate health professionals. First Steps Nutrition Trust Studio 3.04 The Food Exchange New Covent Garden Market London SW8 5EL Registered charity number: 1146408 First Steps Nutrition Trust is a charity which provides evidence-based and independent information and support for good nutrition from pre-conception to five years of age. For more information, see our website: www.firststepsnutrition.org Acknowledgements This report was written by Rachael Wall and Dr Helen Crawley. We would like to thank Annie Seeley, Sarah Weston, Erik Millstone and Anna Rosier for their help and support with this report. Artificial food colours and children: page 1 Contents Page Executive summary 3 Recommendations -
Global Regulations of Food Colors Each Region Has Its Own Definitions of What Constitutes a Color Additive, with Related Use Requirements and Restrictions
Global Regulations of Food Colors Each region has its own definitions of what constitutes a color additive, with related use requirements and restrictions. Sue Ann McAvoy Sensient Colors LLC t is said, we eat with our eyes . Since antiq - food colors was soon recognized as a threat Iuity, humans have used the color of a to public health. Of concern was that some food to discern its quality. Color provides of the substances were known to be poi - a way to judge ripeness, perceive flavor and sonous and were often incorporated to hide assess quality of food. poor quality, add bulk to foods and to pass Ancient civilizations introduced color off imitation foods as real. into their foods. The ancient Egyptians col - On February 1, 1899, the executive com - ored their food yellow with saffron, and the mittee of the National Confectioners’ Asso - ancient Mayans used annatto to color their ciation published an official circular which Sue Ann McAvoy is food orange-red. Wealthy Romans ate bread was “to throw light upon the vexed question global regulatory scien - that had been whitened by adding alum to of what colors may be safely used in confec - tist for Sensient Food the flour. Color could be used to enhance tionery” as “there may at times be a doubt in Colors LLC. She has worked at Sensient the mind of the honest confectioner as to the physical appearance of the product. since 1979. However, if it made the food appear to be which colors, flavors, or ingredients he may of better quality than it was, that was con - safely use and which he may reject.” This list sidered a deceitful practice. -
Regulatory Information Sheet
Regulatory Information Sheet Approved Drug Colourants Listed by the European Union Colour Index Colour E Number Alternate Names Number Allura Red AC (a) E129 16035 FD&C Red #40 Aluminum*** E173 77000 -- Amaranth*** (a) E123 16185 Delisted FD&C Red #2 Annatto*** E160b 75120 Bixin, norbixin Anthocyanins (a) E163 -- -- Beetroot Red E162 -- Betanin Beta APO-8´-Carotenal E160e 40820 -- Brilliant Black BN (a) E151 28440 Black BN Brilliant Blue FCF (a) E133 42090 FD&C Blue #1 Brown HT (a) E155 20285 -- Calcium Carbonate E170 77220 -- Canthaxanthin* E161g 40850 -- Caramel,-Plain E150a -- -- Caramel,-Caustic Sulphite E150b -- -- Caramel,-Ammonia E150c -- -- Caramel, Sulphite Ammonia E150d -- -- Carmine (a) E120 75470 Carminic Acid, Cochineal Carmoisine (a) E122 14720 Azorubine Carotenes E160a 40800 / 75130 -- Chlorophylls/Chlorophyllins E140 75810 / 75815 -- Copper Complexes of E141 75815 -- Chlorophylls/Chlorophyllins(a) Curcumin (a) E100 75300 Turmeric Erythrosine*** (a) E127 45430 FD&C Red #3 Gold*** E175 77480 -- Green S (a) E142 44090 Acid Brilliant Green BS Indigotine (a) E132 73015 FD&C Blue #2, Indigo Carmine 77491 / 77492 / Iron Oxides & Hydroxides E172 Iron Oxide Red, Yellow, Black 77499 Litholrubine BK*** (a) E180 -- -- Lutein E161b -- -- Lycopene*** E160d 75125 -- Paprika Extract E160c -- Capsanthin, Capsorubin Patent Blue V (a) E131 42051 Acid Blue 3 Ponceau 4R (a) E124 16255 Cochineal Red A Page 1 of 2 Document Reference No.: GLO-10107, revision 2 Effective Date: September 2014 Reviewed Date: November 2017 This document is valid at the time of distribution. Distributed 24-Sep-2021 (UTC) E Colour Index Colour Alternate Names Number Number Quinoline Yellow** (a) E104 47005 China Yellow Riboflavins (a) E101 -- -- Silver*** E174 -- -- Sunset Yellow FCF (a) E110 15985 FD&C Yellow #6, Orange Yellow S Tartrazine (a) E102 19140 FD&C Yellow #5 Titanium Dioxide E171 77891 -- Vegetable Carbon E153 77268:1 Carbo Medicinalis Vegetalis The above list is derived from Part B, List of All Additives, from Annex II to Regulation (EC) No 1333/2008 on food additives. -
Role of Microorganisms in Biodegradation of Food Additive Azo Dyes: a Review
Vol. 19(11), pp.799-805, November, 2020 DOI: 10.5897/AJB2020.17250 Article Number: F63AA1865367 ISSN: 1684-5315 Copyright ©2020 Author(s) retain the copyright of this article African Journal of Biotechnology http://www.academicjournals.org/AJB Review Role of microorganisms in biodegradation of food additive Azo dyes: A review Fatimah Alshehrei Department of Biology, Jamum College University, Umm AlQura University, Makkah24382, Saudi Arabia. Received 22 September, 2020; Accepted 27 October, 2020 Food additives Azo dyes are synthetic compounds added to foods to impart color and improve their properties. Some azo dyes have been banned as food additives due to toxic, mutagenic, and carcinogenic side effects. Long exposure to foods containing azo dye leads to chronic toxicity. Some microorganisms are capable to degrade these dyes and convert them to aromatic amines. In human body, microbiota can play a vital role in biodegradation of azo dyes by producing azo reductase. Aromatic amines are toxic, water-soluble and well absorbed via human intestine. In the current study, the role of microorganisms in biodegradation of six dyes related to azo group was discussed. These dyes are: Tartrazine E102, Sunset Yellow E110, Ponceau E124, Azorubine E122, Amaranth E123, and Allura Red E129 which are classified as the most harmful food additive dyes. Key word: Food additive, azo dyes, microorganisms, azo reductase, aromatic amines. INTRODUCTION Food additives are synthetic compounds added to food In the USA and European countries, some azo dyes have for many proposes such as maintaining the product from been banned as food additives due to toxic, mutagenic, deterioration or improving its safety, freshness, taste, and carcinogenic side effects (Chung, 2000). -
Spectrophotometric Determination of Sunset Yellow (E-110) in Powdered Beverages and Pharmaceutical Preparations After Cloud Point Extraction Method
Güray T. JOTCSA. 2018; 5(2): 479-492. RESEARCH ARTICLE Spectrophotometric Determination of Sunset Yellow (E-110) in Powdered Beverages and Pharmaceutical Preparations after Cloud Point Extraction Method Tufan GÜRAY1* 1Eskisehir Osmangazi University, Faculty of Arts and Science, Department of Chemistry, 26480, Eskisehir, Turkey. Abstract: In this study, Brij 58 was used for the spectrophotometric determination of sunset yellow (SY) (E-110) in pharmaceutical preparations and powdered beverages after cloud point extraction (CPE). Certain parameters such as pH, surfactant concentration, extraction time and temperature, speed of centrifugation, and salt concentration were optimized. Linear range in the optimum conditions was 0.01 – 4.00g mL-1 and the correlation coefficient was 0.9995. The limit of detection (LOD) and the limit of quantification (LOQ) of this method were 0.0078g mL- 1 and 0.0261 g mL-1, respectively. Keywords: Brij 58; Sunset Yellow (E-110); Cloud Point Extraction (CPE); Spectrophotometric Determination; Surfactant Submitted: November 05, 2017. Accepted: March 04, 2018. Cite this: Güray T. Spectrophotometric Determination of Sunset Yellow (E-110) in Powdered Beverages and Pharmaceutical Preparations after Cloud Point Extraction Method. JOTCSA. 2018;5(2):479–92. DOI: http://dx.doi.org/10.18596/jotcsa.349382. *Corresponding author. E-mail: [email protected]; [email protected] 479 Güray T. JOTCSA. 2018; 5(2): 479-492. RESEARCH ARTICLE INTRODUCTION Food dyes are used to provide more attractive, appetizing appearances to enhance the taste, flavor, and color of foods (1). Food coloring Sunset Yellow (6-hydroxy-5- [(4-sulfophenyl) azo] -2-naphthalenesulfonic acid disodium salt) (SY) (E-110) is a food additive commonly used in foods, pharmaceuticals, and cosmetics. -
Methodologies for Processing Plant Material Into Acceptable Food on a Small Scale- Phase II
NASAContractorReport177647 Methodologies for Processing Plant Material into Acceptable Food on a Small Scale- Phase II Thomas R. Parks, John N. Bindon, Anthony J. G. Bowles, Peter Golbitz, Rauno A. Lampi, and Robert F. Marquardt Food and AgroSystems, Inc. 1289 Mandarin Dr. Sunnyvale, CA 94087 Prepared for Ames Research Center CONTRACT NAS2-13404 September 1994 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 This report represents the efforts of many, not only principal authors. Food and AgrosSystems sincerely appreciates and wants to acknowledge the valuable contributions made by the following: Mr. Kenneth Carlson Mr. Dan Casper Mr. Fred Coury Dr. Robert Decareau Mr. E. Ray Pariser EXECUTIVE SUMMARY i. Food processing is a technically feasible, effective part of manned space systems. Equipment suitable for processing food on a small scale, under zero-/micro-gravity conditions, have been developed and evaluated on a laboratory prototype scale. 2. Preliminary estimates indicate that while most nutrients can be met by the four crops studied in Phase II, it may be neces- sary to include an additional crop, such as Canola, which has about 2.5 times as much oil content as soy, to aid in meeting dietary fat requirements. 3. Daily planting/harvesting regimens increase personnel invol- vement, but reduce quantities of material to be processed, storage requirements, equipment sizing, energy require- ment (present estimates indicate a possible maximum in- dividual motor peak load of about 2 HP), and opportunities for automation. 4. Use of stable intermediate food products and food processing are compatible with both plant growth and preprepared food systems. -
Inhibition of Enzymatic Browning in Foods and Beverages
Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: http://www.tandfonline.com/loi/bfsn20 Inhibition of enzymatic browning in foods and beverages Arthur J. McEvily , Radha Iyengar & W. Steven Otwell To cite this article: Arthur J. McEvily , Radha Iyengar & W. Steven Otwell (1992) Inhibition of enzymatic browning in foods and beverages, Critical Reviews in Food Science and Nutrition, 32:3, 253-273, DOI: 10.1080/10408399209527599 To link to this article: https://doi.org/10.1080/10408399209527599 Published online: 29 Sep 2009. Submit your article to this journal Article views: 848 View related articles Citing articles: 254 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 Download by: [Texas A&M University Libraries] Date: 09 January 2018, At: 11:03 Critical Reviews in Food Science and Nutrition, 32(3):253-273 (1992) Inhibition of Enzymatic Browning in Foods and Beverages Arthur J. McEvily and Radha lyengar Opta Food Ingredients, Inc., 64 Sidney Street, Cambridge, MA 02139 W. Steven Otwell Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL 32611 ABSTRACT: Enzymatic browning is a major factor contributing to quality loss in foods and beverages. Sulfiting agents are used commonly to control browning; however, several negative attributes associated with sulfites have created the need for functional alternatives. Recent advances in the development of nonsulfite inhibitors of enzymatic browning are reviewed. The review fouses on compositions that are of practical relevance to food use. KEY WORDS: enzymatic browning, polyphenol oxidase, inhibition, antibrowning agents, melanosis. -
Chemical Compound Chemical Treatment in Animal Husbandry
Hindawi Journal of Chemistry Volume 2020, Article ID 4263124, 8 pages https://doi.org/10.1155/2020/4263124 Research Article Chemical Compound Chemical Treatment in Animal Husbandry Xiaoling Tang 1 and Ting Peng2 1Hunan Vocational College of Environmental Biological Technology, Hengyang 421005, Hunan, China 2Department of Chemistry, Zhejiang Xianju High School, Taizhou 317300, Zhejiang, China Correspondence should be addressed to Xiaoling Tang; [email protected] Received 6 August 2020; Revised 9 September 2020; Accepted 21 September 2020; Published 20 November 2020 Academic Editor: Tifeng Jiao Copyright © 2020 Xiaoling Tang and Ting Peng. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. )e acidulant is widely used in the production of animal husbandry, and its use is affected by many factors, including envi- ronmental factors, dosage, diet composition, and animal’s own factors, so only the correct use of the acidulant can bring good results in animal production and financial income. )is article takes acidifier as an example to study the application of compound chemical treatment in livestock farms. In this paper, the effect of using acidulant in the first 1 to 3 weeks after early weaning of piglets is obvious through this experimental study. )e effect gradually decreases after 3 weeks and basically has no effect after 4 weeks. Experimental studies have found that the combination of organic acids, antibiotics, and high copper is the most effective. )ese three have different functions and have complementary or additive effects. -
Ancillary Substances, Fermentation Processes, Prohibited Uses of Synthetics, and §606 Will Be Addressed in Separate Sections of These Comments
September 17, 2019 Ms. Michelle Arsenault National Organic Standards Board USDA-AMS-NOP 1400 Independence Ave. SW Room 2648-S, Mail Stop 0268 Washington, DC 20250-0268 Docket ID # AMS-NOP-19-0038 Re. HS: Sunset §605, 606 These comments to the National Organic Standards Board (NOSB) on its Fall 2019 agenda are submitted on behalf of Beyond Pesticides. Founded in 1981 as a national, grassroots, membership organization that represents community-based organizations and a range of people seeking to bridge the interests of consumers, farmers, and farmworkers, Beyond Pesticides advances improved protections from pesticides and alternative pest management strategies that reduce or eliminate a reliance on pesticides. Our membership and network span the 50 states and the world. Some general issues pertain to a number of materials. General issues concerning ancillary substances, fermentation processes, prohibited uses of synthetics, and §606 will be addressed in separate sections of these comments. Ancillary Substances A Little History On Nov. 23, 2011, National Organic Program (NOP) Deputy Administrator Miles McEvoy sent a Memorandum to the National Organic Standards Board (NOSB) requesting clarification of “other ingredients” contained within handling materials on the National List of Allowed and Prohibited substance used in processed organic products. Since OFPA requires that each non- agricultural ingredient be specifically listed, and because the National List does not specifically list “other ingredients” commonly found in formulated products, NOP identified the need for clarity and requested that the NOSB develop a policy that specifies that all allowed non-organic constituents of organic foods be on the National List in some form. -
Coloring Foods and Beverages
Coloring Foods & Beverages Natural and synthetic colors play several roles in foods and beverages. Here’s how they are regulated in the United States. James C. Griffiths olor is the first notable characteristic of a moisture, and temperature extremes all tend to alter food and often predetermines or “colors” the natural color, making color additives a hot com- modity to restore expectations. Like most good things Cour expectation. We use color as a way to taken too far, it was easy for the unscrupulous to use identify a food and a way to judge the quality of a unsafe or intentionally deceptive colors to hide poor quality and to pass off imitation as real. food. Studies demonstrate that color predetermines our expectations of flavor and taste. Consumers perceive Certified (Synthetic) Colors that yellow goes with “lemon” and pink goes The first synthetic organic dye, a purplish lilac col- with “grapefruit.” Reversing the colors changes the or, was discovered in 1856 by William Henry Perkin perception. Consumers either misdiagnose yellow and called “mauve.” Over the next 50 years, scores of tangerine flavor and orange raspberry flavor or deem similar organic aniline dyes, representing every color them inferior to the correct match. Color also affects and tint of the rainbow, were developed, and many the apparent level of sweetness. Consumers perceive were used to color food with little thought or testing a strongly red-colored strawberry-flavored drink to regarding their safety. Significant toxicity of many be sweeter than a less strongly colored version. And early aniline and coal-tar based colors prompted we often forget that “color” includes white, black, and regulators to examine exactly what was being used to gray. -
Glucono Delta-Lactone Processing
Glucono Delta-Lactone Processing Executive Summary Glucono delta-lactone (GDL) was petitioned to be added to the National List as a tofu coagulant. It is produced by the oxidation of gluconic acid by a number of various methods. In addition to coagulation, GDL is used as an acidulant, leavening agent, and sequestrant. The NOSB was petitioned for this substance in 1995, and declined to refer it to the Technical Advisory Panel. The reviewers all considered it possible to make GDL from non-synthetic sources, although one considered certain sources and processes synthetic. All considered it to be non-agricultural. Two recommended that it be added to the National List with an annotation; one recommended that it remain off the National List. All three recommended that it be allowed for use in a made with organic (specified ingredients) claim. Of these, two supported with annotations, and one recommended no annotations for this use. Further investigation may be required to determine if sources are produced by the use of genetic engineering. Summary of Advised Recommendation 95% organic Synthetic / Non-Synthetic: Allowed or Prohibited: Suggested Annotation: Either synthetic Allowed (1) (Reviewer 1) None. or non-synthetic Prohibited (1) (Reviewer 2) Produced by microbial depending on the fermentation of carbohydrate substances source and or by enzymatic oxidation of organic manufacturing glucose process (1) (Reviewer 3).Must be produced by Non-synthetic (2) fermentation of glucose by naturally occurring microorganisms or enzymes Made with organic (70% or more organic ingredients) Agricultural / Non-Agricultural Allowed or Prohibited: Suggested Annotation: Non-agricultural (3) Allowed (3) (Reviewer 1) For tofu production only.