Solitary Bees

Total Page:16

File Type:pdf, Size:1020Kb

Solitary Bees Solitary Bees Conservation, Rearing and Management for Pollination FEDERAL UNIVERSITY OF CEARA SOLITARY BEES CONSERVATION, REARING AND MANAGEMENT FOR POLLINATION A contribution to the International Workshop on Solitary Bees and Their Role in Pollination, held in Beberibe, Ceará, Brazil, in April 2004 Edited by Breno M. Freitas and Júlio Otávio P. Pereira Fortaleza, CE Brazil 2004 Solitary Bees – Conservation, Rearing and Management for Pollination © 2004 Copyright by Breno Magalhães Freitas and Júlio Otávio Portela Pereira (Orgs.) Universidade Federal do Ceará Departamento de Zootecnia – CCA C. P. 12168, Campus do Pici – CEP: 60.021-970 Fortaleza – CE, Brazil – Phone: +55 (85) 288.9697 www.abelhas.ufc.br – E-mail: [email protected] Printed in Brazil Cover: Xylocopa sp. visiting a flower of Passiflora sp. Photo by Breno M. Freitas Book formatting: Marcelo Casimiro Cavalcante F862s Freitas, Breno Magalhães Solitary Bees: conservation, rearing and management for pollination. / Breno Magalhães Freitas. Fortaleza: Imprensa Universitária, 2004. 285p.: il. 1. Solitary Bees – pollination. 2. Polinators – conserva- tion and management. 3. Agriculture I. Pereira Júlio Otávio Portela (ed.) II. Título. CDD 683.12 ISBN 85-7485-049-7 Workshop promoters Federal University of Ceara – UFC Ministry of Environment – MMA Brazilian Pollinators Initiative – BPI Workshop organizer UFC Bee Research Group Workshop sponsors Ministry of Environment – MMA Ministry of Science and Technology – MCT Federal University of Ceara – UFC Brazilian Council for Scientific and Technological Development – CNPq Committee for Postgraduate Courses in Higher Education – CAPES Development Bank for the NE Brazil – BNB Brazilian Service to Support Micro and Small Business – SEBRAE Institute Center for Technological Teaching – CENTEC Tourism Secretary of the State of Ceara – SETUR Municipal City Hall of Beberibe – PMB DEDICATION This book is dedicated to the fiftieth anniversary of foundation of the Federal University of Ceara (1954 - 2004) PREFACE This book was prepared as a contribution of scientists from all around the world, experts on solitary bees, to the International Workshop on Solitary Bees and their Role in Pollination, which was held in Beberibe, state of Ceara, Brazil, from 26 to 29 April, 2004. The book and the workshop are initiatives of the Brazilian Pollinator Initiative, Ministry of Environment and celebrates the fiftieth anniversary of foundation of the Federal University of Ceara. The main objective of this book is to bring together updated knowledge on solitary bees, especially their use for crop pollination. Subjects such as rearing, building-up population techniques, standardized methodologies, losses of species diversity, population decline & management practices, assessment of the economic value of their pollination services and the economic impact of the decline of pollination services are covered in the six sessions and 25 chapters in which the book is arranged. Session I “The Pollinator Initiatives” comprises 6 chapters and covers the International Pollinator Initiative (Chapter 1) coordinated by FAO, as well as the five regional initiatives underway in Brazil (Chapter 2), EUA (Chapter 3), Europe (Chapter 4), SE Asia (Chapter 5) and Africa (Chapter 6). These initiatives deal with pollinators in general, but bees constitute the most important group of pollinators and 85 % of the 20,000 known species of bees are solitary. Despite the great number of solitary bees, little is known about most species and their population status. Session II “Monitoring and Population Dynamics of Solitary Bees” discusses the need of monitoring natural populations and standardize methodologies (Chapter 7), revises trap-nest techniques for monitoring solitary bees and lists species caught in trap nests in Brazil (Chapter 8). This session also discusses population dynamics and genetics of solitary bees through two elegant studies carried out in temperate (Chapter 9) and tropical climates (Chapter 10). Although reckon as important pollinators, many species of solitary bees are endangered and their economic value to natural and agricultural ecosystems is still little known. Session III “Conservation and Economic Valuation of Solitary Bee Pollination Services” presents experiences for restoring native bee pollinators (Chapter 11), discusses the dependence of pollination services on community composition (Chapter 12), the economic valuation of bee pollination services and its implications for farm managing and policy (Chapter 13) and uses the bumblebee rearing and commercializing industry to discuss the potential of managing other bee species for pollination (Chapter 14). A few species of solitary bees have been used for large-scale crop pollination. Session IV “Rearing and Managing Solitary Bees: Osmia and Megachile” shows how Osmia bees have been studied in their life cycle (Chapter 15) and reared for crop pollination (Chapter 16), and discusses the difficulties in identifying Megachile species (Chapter 17) and the valuable use of pollen analysis to monitor pollen sources of solitary bees (Chapter 18). Other promising solitary bee species for crop pollination are covered in Session V “Solitary Bees in Agriculture Systems: Centris and Xylocopa “. These two bee genus are being proposed for pollination of a variety of crops, such as cashew (Anacardium occidentale) and West Indian cherry (Malpighia emarginata) (Chapter 19), wild plant species just coming into agriculture like nance (Byrsonima crassifolia) and Peanut Butter Fruit (Bunchosia argentea) (Chapter 20), and greenhouse crops like tomatoes (Lycopersicum esculentum) (Chapter 21). Finally, the importance of solitary bees to the pollination of wild plants is exemplified in Session VI “Wild Pollination Systems Involving Solitary Bees” with a beautiful preliminary communication of ricochet pollination in the Cassiinae (Chapter 22), the discussion whether oligolectic bees are always the most effective pollinators (Chapter 23), their role on the reproductive biology of timber trees (Chapter 24) and a review on oil-collecting bees and their related plant species (Chapter 25). Breno M. Freitas and Júlio Otávio P. Pereira ACKNOWLEDGEMENTS The editors thanks the contributors to this book for their time and knowledge put into each chapter. We are also thankful to sponsors which supported the International Workshop on Solitary Bees and Their Role in Pollination that motivated the conception of this book and for funding to allow its publication. We are grateful to the Bee Research Group of the Federal University of Ceara for the work and dedication its members put into the preparation of this book and we are particularly indebted to Mr. Marcelo Casimiro Cavalcante for his expertise in formatting the book. 12 Contents TABLE OF CONTENTS PAGES Session I. The Pollinator Initiatives 17 1 Food and Agriculture Organization of the United Nations. “Conservation and Management of Pollinators for Sustainable Agriculture - The International Response” 19 2 Vera Lucia Imperatriz Fonseca and Braulio Ferreira Souza Dias “Brazilian Pollinators Initiative” 27 3 Michael Ruggiero, Stephen Buchmann and Laurie Adams. “The North American Pollinator Initiative” 35 4 Simon Potts (ed.). “European Pollinator Initiative (EPI): Assessing the Risks of Pollinator Loss” 43 5 Uma Partap. “An Overview of Pollinators Research and Development in the Hindu Kush-Himalayan Region” 57 6 Connal Eardley, Barbara Gemmill, Peter Kwapong and Wanja Kinuthia. “The African Pollinator Initiative” 67 Session II. Monitoring and Population Dynamics of Solitary Bees 71 7 Fernando A. Silveira. “Monitoring Pollinating Wild Bees” 73 8 Carlos Alberto Garófalo, Celso Feitosa Martins and Isabel Alves-dos-Santos. “The Brazilian Solitary Bee Species Caught in Trap Nests” 77 9 Claudia Mohra, Martin Fellendorf and Robert J. Paxton. “The Population Dynamics and Genetics of Solitary Bees: A European Case Study, Andrena vaga (Hymenoptera, Andrenidae)” 85 10 David W. Roubik. “Long-term Studies of Solitary Bees: What The Orchid Bees are Telling Us” 97 Session III. Conservation and Economic Valuation of Solitary Bee Pollination Services 105 11 Gordon W. Frankie and S. Bradleigh Vinson. “Restoring Native Bee Pollinators: A Case History in Costa Rica” 107 13 Contents 12 Claire Kremen. “Pollination Services and Community Composition: Does it Depend on Diversity, Abundance, Biomass, or Species Traits?” 115 13 Adam G. Drucker. “Economic Valuation of Bee Pollination Services: Implications for Farm Management and Policy” 125 14 Hayo H.W. Velthuis and Adriaan van Doorn. “The Breeding, Commercialization and Economic Value of Bumblebees” 135 Session IV. Rearing and Managing Solitary Bees: Osmia and Megachile 151 15 Jordi Bosch and William P. Kemp. “The Life Cycle of Osmia lignaria: Implications for Rearing Populations” 153 16 Antonio Felicioli, Miloje Krunic and Mauro Pinzauti. “Rearing and Using Osmia Bees for Crop Pollination: A Help from a Molecular Approach” 161 17 Anthony Raw. “Ambivalence Over Megachile” 175 18 Rogel Villanueva-Gutiérrez and David W. Roubik. “Pollen Sources of Long-Tongued Solitary Bees (Megachilidae) in the Biosphere Reserve of Quintana Roo, Mexico” 185 Session V. Solitary Bees in Agricultural Systems: Centris and Xylocopa 191 19 Breno M. Freitas and Julio Otávio P. Pereira. “Crop Consortium to Improve Pollination: Can West Indian Cherry (Malpighia emarginata) Attract Centris Bees to Pollinate Cashew (Anacardium occidentale)?” 193 20 Stephen L. Buchmann. “Aspects of Centridine Biology
Recommended publications
  • Male and Female Bees Show Large Differences in Floral Preference
    bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Male and female bees show large differences in floral preference 2 3 Michael Roswell [email protected] 4 Graduate program in ecology and evolution, Rutgers University 5 14 College Farm Road, New Brunswick, NJ 08904 6 7 Jonathan Dushoff 8 Department of biology, McMaster University 9 1280 Main St. West, Hamilton, Ontario ON L8S 4K1 10 11 Rachael Winfree 12 Department of ecology, evolution, and natural resources, Rutgers University 13 14 College Farm Road, New Brunswick, NJ 08904 1 bioRxiv preprint doi: https://doi.org/10.1101/432518; this version posted November 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Abstract 15 16 1. Intraspecific variation in foraging niche can drive food web dynamics and 17 ecosystem processes. Field studies and theoretical analysis of plant-pollinator 18 interaction networks typically focus on the partitioning of the floral community 19 between pollinator species, with little attention paid to intraspecific variation 20 among plants or foraging bees. In other systems, male and female animals 21 exhibit different, cascading, impacts on interaction partners.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Euglossine Bees
    Euglossine bees (Apidae) in Atlantic forest areas of São Paulo State, southeastern Brazil Guaraci Duran Cordeiro, Samuel Boff, Tiago Almeida Caetano, Paulo Fernandes, Isabel Alves-Dos-Santos To cite this version: Guaraci Duran Cordeiro, Samuel Boff, Tiago Almeida Caetano, Paulo Fernandes, Isabel Alves-Dos- Santos. Euglossine bees (Apidae) in Atlantic forest areas of São Paulo State, southeastern Brazil. Apidologie, Springer Verlag, 2013, 44 (3), pp.254-267. 10.1007/s13592-012-0176-3. hal-01201293 HAL Id: hal-01201293 https://hal.archives-ouvertes.fr/hal-01201293 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:254–267 Original article * INRA, DIB and Springer-Verlag France, 2012 DOI: 10.1007/s13592-012-0176-3 Euglossine bees (Apidae) in Atlantic forest areas of São Paulo State, southeastern Brazil 1 1 2 Guaraci DURAN CORDEIRO , Samuel BOFF , Tiago DE ALMEIDA CAETANO , 2 2 Paulo César FERNANDES , Isabel ALVES-DOS-SANTOS 1Pós-Graduação em Entomologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Av. Bandeirantes, 3900, Bloco 2, Ribeirão Preto, SP 14040-901, Brazil 2Departamento Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil Received 21 February 2012 – Revised 4 October 2012 – Accepted 19 October 2012 Abstract – We investigated the diversity of euglossine bees in ten areas of Atlantic Forest Domain in São Paulo State, Brazil.
    [Show full text]
  • A Review of Sampling and Monitoring Methods for Beneficial Arthropods
    insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems.
    [Show full text]
  • Managing Alternative Pollinators a Handbook for Beekeepers, Growers, and Conservationists
    Managing Alternative Pollinators A Handbook for Beekeepers, Growers, and Conservationists ERIC MADER • MARLA SPIVAK • ELAINE EVANS Fair Use of this PDF file of Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, NRAES-186 By Eric Mader, Marla Spivak, and Elaine Evans Co-published by SARE and NRAES, February 2010 You can print copies of the PDF pages for personal use. If a complete copy is needed, we encourage you to purchase a copy as described below. Pages can be printed and copied for educational use. The book, authors, SARE, and NRAES should be acknowledged. Here is a sample acknowledgement: ----From Managing Alternative Pollinators: A Handbook for Beekeepers, Growers, and Conservationists, SARE Handbook 11, by Eric Mader, Marla Spivak, and Elaine Evans, and co- published by SARE and NRAES.---- No use of the PDF should diminish the marketability of the printed version. If you have questions about fair use of this PDF, contact NRAES. Purchasing the Book You can purchase printed copies on NRAES secure web site, www.nraes.org, or by calling (607) 255-7654. The book can also be purchased from SARE, visit www.sare.org. The list price is $23.50 plus shipping and handling. Quantity discounts are available. SARE and NRAES discount schedules differ. NRAES PO Box 4557 Ithaca, NY 14852-4557 Phone: (607) 255-7654 Fax: (607) 254-8770 Email: [email protected] Web: www.nraes.org SARE 1122 Patapsco Building University of Maryland College Park, MD 20742-6715 (301) 405-8020 (301) 405-7711 – Fax www.sare.org More information on SARE and NRAES is included at the end of this PDF.
    [Show full text]
  • Notes on Megachile Centuncularis
    Utah State University DigitalCommons@USU Ga Bee Lab 1-1-1874 Notes on Megachile centuncularis Thos. G. Gentry Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_ga Part of the Entomology Commons Recommended Citation Gentry, Thos. G., "Notes on Megachile centuncularis" (1874). Ga. Paper 128. https://digitalcommons.usu.edu/bee_lab_ga/128 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Ga by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 170 'fHE CANADIAN ENTOMOLOGIST. 171 paler than the wings, but I can at once of dijfi11is. But the terminal segments in dijfinis are not " ferru-• Al. ex. -.¡\ inch. ginous" any more than in tmiformis, and so Kirby may have had a boreal The larva is white, without maculae, but with the anterior rnargin oí specieswe do not yet know before him. From his description there is. nomore correspondence with 1mifarmis than with tl1ysbe; rather <loes his. the first segrnent b;own. _ description agree with f11scica11disas to the abdomen terminally. A. l1ydranga:ella. N. sp. ' Cressonia juglandis, p. iv. To this species must be cited Sm. -pallens- The mine and larva only of this species is known, and o( Mr. Strecker, whose figure represents a ?ale ~ specimen of C. succeeded in rearing the imago. The mine, larva and case resernble those j,tgla11dis,without the median shade on thc forewings. Belfrage has sent of A. 11iticordifalie/la, but are perhaps a little srnaller. It mines the leavcs C.j11gla11dis from Texas.
    [Show full text]
  • Orchid Bees of Forest Fragments in Southwestern Amazonia
    Biota Neotrop., vol. 13, no. 1 Orchid Bees of forest fragments in Southwestern Amazonia Danielle Storck-Tonon1,4, Elder Ferreira Morato2, Antonio Willian Flores de Melo3 & Marcio Luiz de Oliveira1 1Coordenação de Pesquisas em Entomologia, Instituto Nacional de Pesquisas da Amazônia, CP 478, CEP 69011-970, Manaus, AM, Brasil 2,3Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, CEP 69920-900, Rio Branco, AC, Brasil 4Corresponding author: Danielle Storck-Tonon, e-mail: [email protected] STORCK-TONON, D., MORATO, E.F., MELO, A.W.F. & OLIVEIRA, M.L. Orchid Bees of forest fragments in Southwestern Amazonia. Biota Neotrop. 13(1): http://www.biotaneotropica.org.br/v13n1/en/ abstract?article+bn03413012013 Abstract: Bees of the tribe Euglossini are known as orchid-bees. In general, areas with more vegetation cover have greater abundance and diversity of these bees. This study investigated the effects of forest fragmentation on assemblages of the euglossine bees in the region of Rio Branco municipality, State of Acre, and surrounding areas. Ten forest fragments with varying sizes were selected for the study and were classified as urban or rural. The bees were sampled between December 2005 and August 2006. A total of 3,675 bees in 36 species and 4 genera were collected. In general abundance and richness of bees did not differ statistically between urban and rural fragments. The index of edge in fragments was a predictor of richness and diversity of bees. The connectivity estimated was also an adequate predictor for richness. Fragments with greater similarity in relation to their landscape structure were also more similar in relation to faunal composition.
    [Show full text]
  • Playing with Extremes Origins and Evolution of Exaggerated Female
    Molecular Phylogenetics and Evolution 115 (2017) 95–105 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Playing with extremes: Origins and evolution of exaggerated female forelegs MARK in South African Rediviva bees ⁎ Belinda Kahnta,b, , Graham A. Montgomeryc, Elizabeth Murrayc, Michael Kuhlmannd,e, Anton Pauwf, Denis Michezg, Robert J. Paxtona,b, Bryan N. Danforthc a Institute of Biology/General Zoology, Martin-Luther-University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany b German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany c Department of Entomology, Cornell University, 3124 Comstock Hall, Ithaca, NY 14853-2601, USA d Zoological Museum, Kiel University, Hegewischstr. 3, 24105 Kiel, Germany e Dept. of Life Sciences, Natural History Museum, Cromwell Rd., London SW7 5BD, UK f Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa g Laboratoire de Zoologie, Research institute of Biosciences, University of Mons, Place du Parc 23, 7000 Mons, Belgium ARTICLE INFO ABSTRACT Keywords: Despite close ecological interactions between plants and their pollinators, only some highly specialised polli- Molecular phylogenetics nators adapt to a specific host plant trait by evolving a bizarre morphology. Here we investigated the evolution Plant-pollinator interaction of extremely elongated forelegs in females of the South African bee genus Rediviva (Hymenoptera: Melittidae), in Ecological adaptation which long forelegs are hypothesised to be an adaptation for collecting oils from the extended spurs of their Greater cape floristic region Diascia host flowers. We first reconstructed the phylogeny of the genus Rediviva using seven genes and inferred Trait evolution an origin of Rediviva at around 29 MYA (95% HPD = 19.2–40.5), concurrent with the origin and radiation of the Melittidae Succulent Karoo flora.
    [Show full text]
  • Malpighiaceae De Colombia: Patrones De Distribución, Riqueza, Endemismo Y Diversidad Filogenética
    DARWINIANA, nueva serie 9(1): 39-54. 2021 Versión de registro, efectivamente publicada el 16 de marzo de 2021 DOI: 10.14522/darwiniana.2021.91.923 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea MALPIGHIACEAE DE COLOMBIA: PATRONES DE DISTRIBUCIÓN, RIQUEZA, ENDEMISMO Y DIVERSIDAD FILOGENÉTICA Diego Giraldo-Cañas ID Herbario Nacional Colombiano (COL), Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D. C., Colombia; [email protected] (autor corresponsal). Abstract. Giraldo-Cañas, D. 2021. Malpighiaceae from Colombia: Patterns of distribution, richness, endemism, and phylogenetic diversity. Darwiniana, nueva serie 9(1): 39-54. Malpighiaceae constitutes a family of 77 genera and ca. 1300 species, distributed in tropical and subtropical regions of both hemispheres. They are mainly diversified in the American continent and distributed in a wide range of habitats and altitudinal gradients. For this reason, this family can be a model plant group to ecological and biogeographical analyses, as well as evolutive studies. In this context, an analysis of distribution, richness, endemism and phylogenetic diversity of Malpighiaceae in natural regions and their altitudinal gradients was undertaken. Malpighiaceae are represented in Colombia by 34 genera and 246 species (19.1% of endemism). Thus, Colombia and Brazil (44 genera, 584 species, 61% of endemism) are the two richest countries on species of this family. The highest species richness and endemism in Colombia is found in the lowlands (0-500 m a.s.l.: 212 species, 28 endemics); only ten species are distributed on highlands (2500-3200 m a.s.l.). Of the Malpighiaceae species in Colombia, Heteropterys leona and Stigmaphyllon bannisterioides have a disjunct amphi-Atlantic distribution, and six other species show intra-American disjunctions.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Flower Preferences and Pollen Transport Networks for Cavity‐Nesting Solitary Bees: Implications for the Design of Agri‐Envir
    Received: 14 February 2018 | Revised: 22 April 2018 | Accepted: 23 April 2018 DOI: 10.1002/ece3.4234 ORIGINAL RESEARCH Flower preferences and pollen transport networks for cavity- nesting solitary bees: Implications for the design of agri- environment schemes Catherine E. A. Gresty1 | Elizabeth Clare2 | Dion S. Devey3 | Robyn S. Cowan3 | Laszlo Csiba3 | Panagiota Malakasi3 | Owen T. Lewis1 | Katherine J. Willis1,3 1Department of Zoology, University of Oxford, Oxford, UK Abstract 2School of Biological and Chemical Floral foraging resources are valuable for pollinator conservation on farmland, and Sciences, Queen Mary University of London, their provision is encouraged by agri- environment schemes in many countries. Across London, UK Europe, wildflower seed mixtures are widely sown on farmland to encourage pollina- 3Royal Botanic Gardens, Kew, Richmond, UK tors, but the extent to which key pollinator groups such as solitary bees exploit and Correspondence benefit from these resources is unclear. We used high- throughput sequencing of 164 Catherine E. A. Gresty, Department of Zoology, New Radcliffe House, Radcliffe pollen samples extracted from the brood cells of six common cavity- nesting solitary Observatory Quarter, 6GG, Woodstock Rd, bee species (Osmia bicornis, Osmia caerulescens, Megachile versicolor, Megachile Oxford OX2, UK. Email: [email protected] ligniseca, Megachile centuncularis and Hylaeus confusus) which are widely distributed across the UK and Europe. We documented their pollen use across 19 farms in south- ern England, UK, revealing their forage plants and examining the structure of their pollen transport networks. Of the 32 plant species included currently in sown wild- flower mixes, 15 were recorded as present within close foraging range of the bees on the study farms, but only Ranunculus acris L.
    [Show full text]
  • On European Honeybee (Apis Mellifera L.) Apiary at Mid-Hill Areas of Lalitpur District, Nepal Sanjaya Bista1,2*, Resham B
    Journal of Agriculture and Natural Resources (2020) 3(1): 117-132 ISSN: 2661-6270 (Print), ISSN: 2661-6289 (Online) DOI: https://doi.org/10.3126/janr.v3i1.27105 Research Article Incidence and predation rate of hornet (Vespa spp.) on European honeybee (Apis mellifera L.) apiary at mid-hill areas of Lalitpur district, Nepal Sanjaya Bista1,2*, Resham B. Thapa2, Gopal Bahadur K.C.2, Shree Baba Pradhan1, Yuga Nath Ghimire3 and Sunil Aryal1 1Nepal Agricultural Research Council, Entomology Division, Khumaltar, Lalitpur, Nepal 2Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur, Kathmandu, Nepal 3Socio-Economics and Agricultural Research Policy Division (SARPOD), NARC, Khumaltar, Nepal * Correspondence: [email protected] ORCID: https://orcid.org/0000-0002-5219-3399 Received: July 08, 2019; Accepted: September 28, 2019; Published: January 7, 2020 © Copyright: Bista et al. (2020). This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. ABSTRACT Predatory hornets are considered as one of the major constraints to beekeeping industry. Therefore, its incidence and predation rate was studied throughout the year at two locations rural and forest areas of mid-hill in Laliptur district during 2016/017 to 2017/018. Observation was made on the number of hornet and honeybee captured by hornet in three different times of the day for three continuous minutes every fortnightly on five honeybee colonies. During the study period, major hornet species captured around the honeybee apiary at both locations were, Vespa velutina Lepeletier, Vespa basalis Smith, Vespa tropica (Linnaeus) and Vespa mandarina Smith. The hornet incidence varied significantly between the years and locations along with different observation dates.
    [Show full text]