19 95ApJS. . .99. . .67N 45 ence Foundation. ated byAURA,Inc.,undercooperative agreementwiththeNationalSci- through thepotentialofamassiveblackhole.Onscales~0.1- Australia. © 1995.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. The AstrophysicalJournalSupplementSeries,99:67-106,1995July scales, -10"to10~pc,energyisreleasedasgasaccretes and haveprovidedarelativelyclearpictureofseveralnested active properties,ratherthanthepropertiesofhostgalaxy, Palma, Spain. Drive, Baltimore,MD21218. regions spanningawiderangeoflengthscales.Onthesmallest tion inadeeppotential.Thus,itwouldseemthattogainclear ticles andradiationreleasedfromtheactivecenteremergeto tential causesbothgasandstarstosettleinward,firstforming, encounter gaswhosepropertiesmayalsodependonitsloca- then feedinganactivenucleus.Furthermore,theenergeticpar- such astudyforSeyfertgalaxies. important tostudynuclearpotentials.Ouraimisprovide understanding ofthephenomenonactivityingalaxies,itis lution, andmanifestationofactivity.Relaxationwithinthepo- ence ofthepotentialwellplaysacrucialroleinonset,evo- standard blackholescenarioorastarburstscenario,thepres- a deepgravitationalpotentialwell.Whetherweconsiderthe reason forthispreferredlocation,ofcourse,isthepresence in galaxiesisitslocation:alwaysatthecenterofgalaxy.The 1 pcthenuclearradiationfieldionizeshigh-densityclouds 4 2 3 1 VisitingAstronomer,Rocquede LosMuchachosObservatory,La VisitingAstronomer,KittPeakNationalObservatory.KPNOisoper- VisitingAstronomer,Anglo-Australian Observatory,Epping,NSW, Most previousstudiesofactivegalaxieshavefocusedonthe Currentaddress:SpaceTelescopeScienceInstitute,3700SanMartin One oftheremarkablefactsaboutoccurrenceactivity -1 Subject headings::kinematicsanddynamics—Seyfert this databasetoinvestigatetherelationshipbetweennucleargravitationalpotentialandotherpropertiesof (1992a) for20Seyfertgalaxiesnotoriginallyincluded.Weplantouseourmeasurementsinconjunctionwith contains 85objects(22type1Seyfertgalaxies,512Seyferts,nineLINERs,andthreenormalgalaxies).We briefly discussed.Emission-linevelocitiesandwidthswerealsomeasuredfromourspectra.Thefinalsample the kinematicanalysisassociatedwithfeaturelesscontinuaandstrongemissionlinesinSeyfertgalaxiesare containing theCantripletabsorptionfeaturesat~8550Aand[Sin]9069Àemissionline,otherin Seyfert galaxies. provide asupplementtothedatabaseofnarrow-lineregionandhostgalaxypropertiescompiledbyWhittle the visualincludingMgbabsorptionlinesat~5175Áand[Om]5007Aemissionline.Nuclearstellar present moderate-resolutiondata(80-230kmsFWHM)fromtwospectralregions,oneinthenear-infrared velocities, F*,andvelocitydispersions,o'*,weremeasuredusingthecross-correlationmethod.Complicationsfor have measurednuclearstellarandgaseouskinematicsforalargesampleofSeyfertgalaxies.Inthispaperwe STELLAR ANDGASEOUSKINEMATICSOFSEYFERTGALAXIES.I.SPECTROSCOPICDATA In ordertostudytherelationshipbetweengravitationalpotentialandpropertiesofactivegalaxies,we © American Astronomical Society • Provided by theNASA Astrophysics Data System Astronomy Department,UniversityofVirginia,Box3818,Station,Charlottesville,VA22903 1. INTRODUCTION 1,22,3,4 Charles H.NelsonandMarkWhittle Received 1993November3;accepted1994December13 ABSTRACT 67 3 231 4-13 which movethroughthebroad-lineregion(BLR)atspeeds gravitational velocities.Tomeasurethenuclearpotentialwith the scaleofNLR.Anaturalfirststudy,therefore,istolook the innermostregions,theyareneverthelesswellmatched to pc, andusecomponentswhichareknowntobegravitationally any certainty,onemustlooktomuchlargerscales,~10-10 and thenuclearpotentialonmuch smallerscales. kiloparsec-scale potentialand propertiesofnuclearactivity ent whole,itmayalsobepossible tofindlinksbetweenthe associated radiosource.Ifthe nuclearpotentialactsasacoher- scale gravitationalfieldandthe propertiesoftheNLRandits for therelationshipbetweenpropertiesofkiloparsec- supported. Althoughmeasurementsonthisscaleliefaroutside onBLRscalesistoofainttouseasaneffectivetracer of at theresolutionofHubbleSpaceTelescope,lightfrom wind pressure,dominatethecloudmotioninthisregion.Even demonstrated conclusively.Extractingthesubparsecpotential tice theobservationalsignaturesofsuchanaccretiondiskare density ionizedcloudsinthenarrow-lineregion(NLR)travel ple, althoughinprincipletheinnermostpotentialmightbe the gravitationalpotentialinwhichtheyallreside.Forexam- components, thereisstillverylittleknownabouttheformof component ofrelativisticparticlesandmagneticfields,span- component, therecanalsobearadiosynchrotron-emitting at speeds~10-10kms".Inadditiontothisline-emitting unclear whethergravityorotherforces,suchasradiation or from theBLRvelocityfieldismorepromising,butit still probed usingemissionfromthecentralaccretiondisk,inprac- sec, oftenincludingajetlikecomponent. not wellunderstood.Indeed,eventheirexistencehasyettobe ning asimilarrangeinlengthscales,fromsubparsectokilopar- ~ 10kms,whilefartherout,onscales10-10pc,lower Despite arelativelydetailedunderstandingofthese“active” 19 95ApJS. . .99. . .67N the samplearediscussedin§8. compilation ispresentedin§7,andthegeneralproperties of stars andgasarepresentedin§6.ThesupplementtotheW92a sent measurementsoftheprofileparameters.Redshiftsboth method. In§5wedescribetheemission-lineprofilesand pre- ment ofthevelocitydispersionsusingcross-correlation properties aspossible, whilemaximizingthe chancethatareli- been toselectactivegalaxies whichspanaswidearangeof spectra ofthestellarabsorptionfeaturesanddiscussmeasure- vations andspectroscopicreductionsin§3.In4wepresent practical, therefore,toobtain stellarkinematicmeasurements stead chosenamorepragmatic approach.Ourstrategyhas lines areeitherweakorcorruptedbyemissionfromtheactive In §2thesampleselectionisdiscussed.Wedescribeobser- for asamplethatiscomplete intheusualsense.Wehavein- nucleus, makingtheirmeasurement verydifficult.Itisnot have stellarandgaseousvelocitymeasurements. faced withtheproblemthatinmanycasestheseabsorption new Seyfertsnotintheoriginalsamplebutforwhichwenow sented inW92a,weprovideadditionstothisdatabaseforthose use ofthedatabasehostgalaxyandNLRpropertiespre- surements fortheselines.Sinceoursubsequentanalysismakes in] X9069and[Om]X5007,soweprovideprofilemea- length rangesalsoincludethetwoimportantemissionlines[S tered ontheMgbabsorptionlinesat—5200Á.Thesewave- Ca iitripletabsorptionlinesat—8600A,andtheothercen- observations intwowavelengthregions,onecenteredonthe aspects ofnuclearactivity.Ourdatacomprisespectroscopic tional componentoftheNLRvelocityfield,(2)similarities and differencesbetweenSeyfertnormalgalaxybulgekine- matics, and(3)linksbetweenthebulgepotentialother companion paperweusethesedatatoexplore(1)thegravita- ity dispersionforalargesampleofSeyfertgalaxynuclei.In put togetherdifferentlyfromnormalgalaxies. for example,tosearchevidencethattheSeyfertshavebeen properties ofSeyfertgalaxieswiththosenormalgalaxies— tional parameters,itispossibletocomparethedynamical tential. Second,bycombiningthedirectandindirectgravita- 68 NELSON type ofstudytoincludemoredirectmeasurementsthegrav- properties ofnuclearactivityandthedepthpo- properties oftheNLR.Clearly,itisimportanttoextendthis the importanceofnuclearpotentialinunderstanding tude, AF,andgalaxybulgemagnitude,Mforasampleof First, theyallowacleanerinvestigationoftherelationbetween itational field.Suchmeasurementsallowtwolinesofstudy. radio luminosityandNLRemission-linewidth,confirming eters werefoundtocorrelatequitewellwithkiloparsec-scale tions andmoreglobalgalaxykinematics.Whittle(1992a,b,c, rect nucleargravitationalparametersofgalaxyrotationampli- hereafter W92a,W92b,W92c)compiledandstudiedtheindi- and dispersionvelocitiesofstarssomegaseouscompo- gravitational fieldingalaxies.Directprobesincluderotation nents, whileindirectprobesincludestellarluminositydistribu- rothxú 140 Seyfertgalaxies.Infact,theseindirectgravitationalparam- The restofthepaperisorganizedinfollowingmanner. In tryingtostudyabsorptionlinesinactivegalaxies,one is In thispaperwepresentnewmeasurementsofstellarveloc- There areanumberofwaystomeasurethenear-nuclear © American Astronomical Society • Provided by theNASA Astrophysics Data System 2. SAMPLESELECTION & WHITTLE -1 all lieintherange80-230km s(FWHM),whichisadequate for basicstellarandgaseouskinematic work. Spectral resolutionsvaryfor the differentobservingruns,but spectrograph ofthe2.1mtelescope atKittPeak(13nights). on the2.5mIsaacNewtonTelescopeinLaPalma(INT; four wich Observatoryspectrographonthe3.9mAnglo-Australian nights); TIandFORDCCDs wereusedwiththeGoldcam Telescope (AAT;threenights);aGECCCDwasusedwith the al. 1975)wasusedwiththe25cmcameraofRoyalGreen- 23.5 cmcameraoftheIntermediateDispersionSpectrograph dermine studiesofcorrelationsbetweensampleproperties,one ing distributionsofsampleproperties. should neverthelessbecautiouswhenconsideringorcompar- lines. Althoughtheseselectioneffectswillnotseverelyun- the samplesomewhat.Forexample,selectionofnearbygalax- ies mayfavorthoseoflowerluminosityandhencenarrower sorption-line width.Nevertheless,indirecteffectsmaystillbias tion ofgalaxieshasnotexplicitlyconsideredemission-orab- relationship betweenthesepropertiesandthenuclearstellar kinematics. Moreimportantforadynamicalstudy,theselec- both activeandhostproperties,allowinginvestigationofthe fert galaxies.Itcontainsactivegalaxieswithawiderangeof sentative sample,lackingonlythemoreluminoustype1Sey- not completeinanywelldefinedsense.Itis,however,arepre- dispersions whichwedidnotobserveourselves(NGC1566, 1 ).TheImagePhotonCountingSystem(IPCS;Boksenberg et more detail. apparent magnitudedistribution,andasmallerfractionoftype in common),butwithsomewhatlowermeanredshift,brighter surements. ThesampleissimilartothatinW92a(51objects axies, 51type2Seyferts,nineLINERs,andthreenormalgal- with previouslymeasuredvelocitydispersions(totestour axies; ofthese,78haveusablestellarvelocitydispersionmea- NGC 1667,and3516). methods), andaddedthreeSeyfertswithpublishedvelocity atic. Finally,weobservedasmallnumberofnormalgalaxies problems). Usually,objectswereconsideredforobservation unless bothspectralregionswereknowntobehighlyproblem- mag intheBband(see§3forfurtherdiscussionofthese emission), andahostgalaxywhichisfainterthanabout15 only confusesMgbbutisalsocorrelatedwithCantripletin Ca iitripletinemission,strongFenemission(whichnot clude theinvisibilityofMgbandCaiitripletfeatures, region). Characteristicswhichweighedagainstselectionin- Ward 1988wereveryhelpfulinassessingtheCaHtriplet spectra toguideselection(e.g.,thespectralplotsofMorris& axies fromthelistsofVéron-Cetty&Véron(1987)andKa- expand thissample,however,wehaveincludedadditionalgal- neko (1986).Whereverpossible,welookedatlow-dispersion already beeninvestigatedinsomedetail(W92b,W92c).To since theirkinematic,active,andhostgalaxypropertieshave drawn heavilyonthesampleof140SeyfertgalaxiesinW92a, able valueforthestellarkinematicscanbeobtained.Wehave 1 Seyfertgalaxies.Section8describesthesamplepropertiesin We chosetowork withtwospectralregions, each containing We presentdatatakenfromthreeobservatories(seeTable As withtheW92asample,ourstellardispersionsampleis The finalsampleof85objectsincludes22type1Seyfertgal- 3. OBSERVATIONSANDREDUCTION Vol. 99 19 95ApJS. . .99. . .67N the Caiitripletspectralregion isthenumerousOHemission Ca iitripletclearlyseeninemission. Anotherdifficultywith region. Inonlytwoobjects(Mrk 6,andNGC4051)wasthe thoroughly confusethekinematicanalysis.Theselinesap- Seyferts withstrongopticalFe iiintheCantripletspectral emission strength(Persson1988), wetriedtoavoidobserving the CaHemissionstrength correlates withtheopticalFen ippenko 1983)areamoreseriouscontaminationproblem. the Caiitripletfeaturescanactuallyappearinemission.Since butions withintheNLRandhencesimilarlineprofiles.Figure These fallinthemidstofMgbtripletand,ifstrong,can ionization Seyfert1and2galaxies(e.g.,Malkan&Fil- tures areusuallyquitesmooth(originatingintheBLR),care- problems cancomplicatethekinematicanalysis.Forexample, density, andsoweexpectthemtohavesimilaremissiondistri- can usuallyremovethemquiteeffectively.The[Fevu]and blends at~5190and—5320Àcanintroduceconsiderableir- Seyfert type1.5galaxyNGC4051. the Caiitripletabsorptionfeaturesat8498.0,8542.1, and ful continuumfittingandlow-frequencyfiltering(see§4.3) regularity neartheMgbtriplet.However,sinceblendfea- broad (e.g.,Mrk78)wesubtractedascaledandshifted[Oill] triplet. Inthefewcasesinwhich[Ni]linesareunusually the stellarkinematicsoftheseobjects(NGC4051,NGC3227, at 5197.4+5200.4ÀwhichliesjusttotheredofMgb NGC3786.Severalfeaturescancomplicatethekine- blends at5269.6and5326.6A,aswellthestrongemission NGC 4593)usingtheCantriplet. peared inonlyafewofourspectra,andwewereabletorecover [Fe vi]linesat5158.3,and5177.0Á,foundinsomehigh- matic analysisandwerecarefullymonitored.Thestrong shows asamplespectrumintheMgbregionforSeyfert1.5 lines HßX4861.3and[Om]XX4958.95006.9.Figure\a X5007 profile.Insometype1SeyfertsthepermittedFeii sium btripletat5167.5,5172.7,and5183.6ÂtheFeI visual spectralregion(~4700-5700Â)containsthemagne- strong stellarabsorptionandgaseousemissionfeatures.The [O ni]X4959havesimilarionizationpotentialandcritical [S ill]9068.9Äemissionlines.Thelinesin]X9069 and 8662.1 Á,aswellthepermitted018446.4Àandforbidden [ Oin]andnarrowH/?weresimplycut,aswastheNIdoublet \b showsasamplespectrumoftheCaiitripletregionfor the No. 1,1995 As withthevisualspectralregion,anumberofpotential The near-infraredspectralregion(—8300-9400Á)contains © American Astronomical Society • Provided by theNASA Astrophysics Data System Run 3/24/91 -3/27/91 2/21/86 -2/24/86 9/29/84 -10/1/84 5/1/92 -5/4/92 9/6/90 -9/10/90 Dates KINEMATICS OFSEYFERTGALAXIES.I. IDS 23.5cm AAT 3.9m Goldcam KPNO 2.1m Goldcam KPNO 2.1m Goldcam KPNO 2.1m INT 2.5m RGO 35cm Spectrograph Format Telescope Detector Spectroscopic Observations 400 x580 Ford CCD 512 x800 TI CCD 512 x800 TI CCD IPGS GEC CCD 1024 x2048 1066 x36 TABLE 1 4670 - 4675 -5700 4670 -5700 8370 - 8370 -9420 8265 -9160 4700 -5700 -1 -1 Spectral Grating/DispersionResolution direct recordofthespatial profile (seeing/telescopefocus/ range tohelpmatchthegalaxy spectraltype.Shortexposures of brightstarsneareachgalaxy werealsoobtained,givinga and G0-K5giantsforthevisual spectra,providingsufficient These wereprimarilyKgiants forthenear-infraredspectra, instrument). Thiswasparticularly importantfortheKPNO of velocitytemplatestarsforuseinthekinematicanalysis. the problemisnotassevereexpected,andthatformany kinematic work. by Dressier(1984)usingspectraofNGC1068,inwhich the triplet regioninactivegalacticnuclei(AGNs)wasfirststressed Range Order(FWHM) Seyfert galaxiestheMgblinesarestillsufficientlystrong for let linesarequitestrong.Ourexperienceshows,however, that absorption linesinthevisualarewashedoutbutCaIItrip- less thantheMgbregion).ThislastpreferenceforCa n efficiencies (favoringtheMgbregionforfaintergalaxies), galaxies withlowexpecteddispersions),thedifferenceinCCD population (favoringtheCaiitripletregion,whichisaffected and theinfluenceofpower-lawdilutionand/orayoungstellar lution (favoringtheCaiitripletregionforlowerluminosity Additional considerationswerethedifferenceinvelocityreso- each object,basedonthepotentialproblemsoutlinedabove. the MgbandCaiitripletregions,respectively,forKPNO tion wasinanycaseuncertain. NGC 3227,seemedtoshowPaschenlines,andtheidentifica- observations themostsuitablespectralregionwaschosenfor cleaner partofthespectrum.Fortunately,onlyonegalaxy, assessed fromthevisibilityofPa12and14,whichlieina a potentialconcern,sincePal3,5,andPal6lieinthecores of thethreeCaiitripletlines.Usuallytheirimportancecanbe present. Finally,thehighermembersofPaschenseriesare placement quitedifficult,particularlyifbroadOiX8446isalso dow forthe[Sin]linegalaxieswithredshiftsinrange than —8000kms.Between9175and9265Átheatmo- of objects(e.g.,Mrk3,1,NGC4151),makingcontinuum between theCantripletlinesandisquitestronginanumber spheric absorptionisnoticeablysmootherandprovidesawin- surement oftheCantripletingalaxieswithredshiftsgreater spheric absorptionbandsabove8900Acomplicatethemea- lines whichrequirecarefulskysubtraction(Fig.2showsthe KPNO night-skyspectrum).Inaddition,thestrongatmo- 3500-6500 kms.The[Fen]X8617emissionfeaturelies 1-1 À 1mm"pix~kins In additiontothegalaxyobservations,spectrawereobtained Although theAATandINTobservationswererestrictedto 5700 9420 1200 1 600 1 600 1 600 1 6001 6001 6001 0.48 1.29 1.29 1.29 1.29 1.29 1.55 230 156 173 173 156 123 80 -1 Spatial " pix Scale 0.78 0.78 0.78 0.78 0.69 1.2 69 19 95ApJS. . .99. . .67N features areindicated,andthespectra areplottedasrelativefluxperunitwavelength. Fig. 1.—SpectraofNGC3786in thevisual(top)andNGC4051innear-infrared{bottom)aredisplayed asexamples.Emissionandabsorption 05 Ë > Q) X Q) © American Astronomical Society • Provided by theNASA Astrophysics Data System KINEMATICS OF SEYFERT GALAXIES. I. 71

ft

X I—I (j-l (D >

0) PS

Observed Wavelength (Â) Fig . 2.—Night-sky emission lines in the near-infrared are plotted as relative flux per unit wavelength. Most lines are rotation-vibration bands of the OH molecule. The broad band between 8600 and 8700 Â is due to 02.

2.1 m observations, since the spectrograph is somewhat astig- the reconstructed [ S in ] X9069 profiles could not be considered matic and the telescope focus was unstable. To help remove reliable, although plots of the profiles appear in Figure 9. the strong atmospheric absorption bands in the near-infrared, An additional complication in the INT data became appar- exposures of featureless stars were obtained at a range of air ent during sky subtraction; the extended sky lines were shifted masses; some of these were also used as flux standards. Because by ~0.4 pixels (~0.6 Á, —20 km s-1) with respect to those wavelength integrity is important, He/Ne/Ar calibration over the galaxy. Despite the use of significant preflash, this exposures were taken before and after each observation. effect is caused by residual charge transfer inefficiency during The AAT data were reduced using SPICA on the Starlink readout of the GEC CCD along the spectral direction. To cor- VAX at Cambridge, and the INT and KPNO data were re- rect for this, a rough correlation was found between the num- duced using IRAF on the at Virginia. Initial data reduc- ber of counts per pixel and the amount of shift. For each data tion followed standard practice, including bias subtraction ( for frame, the counts per pixel near the Ca n triplet feature defined the CCD data), flat-fielding, correction for slit response (INT a series of shifts which were applied to bring the entire frame and KPNO data only), sky subtraction, and wavelength cali- onto a common wavelength scale. The subsequent sky subtrac- bration. Typical wavelength fits used 15-20 lines in the visual tion was noticeably improved, and the good agreement be- and 10-15 lines in the near-infrared, giving rms residuals ~0.1 tween the INT and KPNO velocities suggests that this correc- pixel and ~0.2 pixel, respectively, using third- to fifth-order tion method was effective, at least for the Ca n triplet lines. polynomials. These fits were done at 20-30 locations along the Specific problems encountered with particular objects, sim- slit. In two objects (NGC 2273 and NGC 4941) the [S m] ilar to those described above, are noted in the Appendix. X9069 line was located sufficiently close to the edge of the chip that a reliable wavelength scale could not be defined. 4. ANALYSIS OF STELLAR KINEMATICS The atmospheric absorption features were removed from 4.1. Absorption-Line Spectra the near-infrared spectra by dividing by the scaled spectrum of a whose only features were atmospheric. In most cases this In Figure 3 we display portions of the reduced spectra near proved to be a satisfactory technique, though perhaps not per- the Ca ii triplet and Mg b features. Each spectrum has been fect. For a few objects (e.g., NGC 513, NGC 3031, Akn 79), corrected to its rest frame and is plotted as normalized flux per

© American Astronomical Society • Provided by the NASA Astrophysics Data System 19 95ApJS. . .99. . .67N spectral rangetoshowtheintrinsic widthandinstrumentalresolution.TheAATspectraaredisplayed separately,sincetheresolutionwashigheronthis each panel.Thewavelengthsofthe mostprominentfeaturesareindicatedatthebottom.Stellartemplate spectraareincludedasthefirstobjectineach observing run. features, allspectraarede-redshifted andareplottedasrelativefluxperunitwavelengthwiththezeropoint foreachobjectmarkedontheleft-handsideof Fig .3.—Absorption-linespectraare presented(tf)inthenear-infraredand(b)visual.Toallowcomparison ofthewidthandstrengthstellar © American Astronomical Society • Provided by theNASA Astrophysics Data System Wavelength (Â) Fig. 3a 72 Wavelength (Â) 19 95ApJS. . .99. . .67N © American Astronomical Society • Provided by theNASA Astrophysics Data System Fig. 3a—Continued 73 Wavelength (Â) 19 95ApJS. . .99. . .67N © American Astronomical Society • Provided by theNASA Astrophysics Data System Wavelength (Â) Wavelength (Â) Fig. 3a—Continued 74 19 95ApJS. . .99. . .67N © American Astronomical Society • Provided by theNASA Astrophysics Data System Fig. 3a—Contimied 75 Wavelength (Â) 19 95ApJS. . .99. . .67N © American Astronomical Society • Provided by theNASA Astrophysics Data System Wavelength (Â) Wavelength (Â) Fig. 3b 76 19 95ApJS. . .99. . .67N © American Astronomical Society • Provided by theNASA Astrophysics Data System Wavelength (Â) Wavelength (Â) Fig. 36—Continued 11 19 95ApJS. . .99. . .67N © American Astronomical Society • Provided by theNASA Astrophysics Data System Wavelength (Â) Fig. 2>b—Continued 78 Wavelength (Â) 19 95ApJS. . .99. . .67N © American Astronomical Society • Provided by theNASA Astrophysics Data System Wavelength (Â) Fig. —Continued 79 Wavelength (Â) 19 95ApJS. . .99. . .67N spectra isapproximatedbythe autocorrelationofthetemplate Thus, thecross-correlationfunction ofthegalaxyandtemplate a(n-x) =t'Xt,andsubstitutionyieldsaconvolutionintegral, Note thattheinnerintegralisjustautocorrelationfunction Upon changingtheorderofintegration,thisbecomes spectively. Combiningequations(1)and2),wehave where Xand*denotecross-correlationconvolution,re- galaxy spectrumiswellrepresentedbyasingle-star jects areidentifiedwithacrossinFigure3. zero velocitybyanamountb.Thus,wehave to uniformshiftsinn,andsymmetricvelocitydistributionsare convolved withaGaussianbroadeningfunction,b,offsetfrom symmetric functionsinn.Themethodalsoassumesthatthe bins, «,evenlysamplelnX,sothatvelocityshiftscorrespond peak whoselocationandwidtharerelatedtotheredshift velocity dispersionofthestarsingalaxy.Here,spectral a single-startemplatespectrum,t(n),yieldsfunctionwith cross-correlation, c{n),betweenagalaxyspectrum,g(n),and Tonry &Davis(1979),withsomemodifications.Briefly,the sured usingthecross-correlationmethoddescribedindetailby rupting emissionlines,strongskyabsorption,lowsignal-to- tions. Nevertheless,reliableredshiftsand/ordispersionscould noise ratio,ortheweaknessofabsorptionlines.Theseob- not beascertainedinanumberofcases,eitherbecausecor- persions, givingrepeatableresultsforindependentobserva- looking spectracanyieldreasonablyreliableredshiftsanddis- makes useoftheentirespectrum,evensomepoorest absorption-line strength.Becausethecross-correlationmethod tion, astellartemplateisplottedatthebeginningofplotfor since theyhavesignificantlyhigherspectralresolution. each spectralregion.TheAATspectraareshownseparately, 80 are indicatedatthebottom.Toshowinstrumentalresolu- on theleftborder,andlocationsofstrongestfeatures unit wavelength.Thezeropointsareindicatedastickmarks Stellar ,F*,andvelocitydispersions,a*,weremea- These spectraspanawiderangeofsignal-to-noiseratioand c(n)^t(n)X {b(n-b)*t(n)} © American Astronomical Society • Provided by theNASA Astrophysics Data System J+oo (*+oo J+oo (*+oo 4.2. TheCross-CorrelationMethod -oo J—oo -oo J—co b(x-b) It(m)t(m+n-x)dmdx.(4) t(m) Ib(x—b)t(m+n-x)dxdm.(3) = b(n-b)*{t(n)Xt(n)}. (5) J+oo -oo b(x- b)a(n-x)dx J+oo -oo J+oo -oo t{m)g(m +n)dm,(1) b(x— b)t(n—x)dx,(2) NELSON &WHITTLE -1 1- wraparound effects,eachspectrum waspaddedwithzerosat one end,makingatotalof4096 bins(seeSimkin1974). function tobringeachendsmoothly tozero.Finally,avoid rithmic binsoneachside)were multipliedbyacosinebell lems withtheanalysis.Theends ofeachspectrum(100loga- lines, particularlythestrongnarrow lines,causesseriousprob- posed stellarabsorptionlines.Failingtoremovetheseemission emission lines(OiX8446andHßinSeyfert1galaxies)were them. Narrowemissionlines,poorlysubtractedsky and fitted withGaussiansandsubtracted,preservingthesuper- (primarily Hß),wereremovedbysimpleinterpolation.Broad unwanted intrinsicallybroadstellarabsorptionlines adds noisetotheabsorptionlinesbutdoesnototherwiseaffect (AGN-like) continuum.Suchacontinuumcomponent only Note thatthisremovestheinfluenceofdilutionbyafeatureless subtracting athird-orderpolynomialfittoeachspectrum. guess attheredshiftforeachgalaxytoselectastartingwave- for theCantripletregion. venience (seebelow)wechose2048logarithmicbins,giving length forthelogarithmicrebinning.Forcomputationalcon- these windowsareredshiftedforthegalaxies,weusedaninitial to-noise ratio),wechosetoworkwithwindowsat4675-5545 Á inthevisualand8440-8733near-infrared.Because relatively barrenspectralregions(whichlowerthenetsignal- where Xisthestartingwavelength,AFlogarithmicbin size inkmsbinandnisthenewnumber.Toexclude ~25 kms“binfortheMgbregionand~5sbin“ wavelength scale, by includingmorechannels. tial channelstoimprovethesignal-to-noiseratio.Thiswas done onlyifthedispersionvaluewasnotsignificantlyaltered exposures. Occasionallyitwasnecessarytoincludeextraspa- effective apertureof~1''5X2''2(slitwidthslitlength).In three spatialchannelswerecombined,resultinginatypical most casesthiswascomparabletotheFWHMofseeing/ tracted thenuclearregionbysummingalongslit.Usually 0 was kindlyprovidedbyM.CollessandG.Efstathiou. instrument profile,asmeasureddirectlyfromadjacentstar cross-correlation peak,aftercorrectingforinstrumentalreso- broadening function, 'Ó) ^o B 03 o

Fig . 4.—Cross-correlation functions for NGC 2992 are displayed in each spectral range to show differences in the two spectral regions. The insets show expansion of the area near the peak. The dash-dot line is the Gaussian fit, with the peak center and error marked as the vertical line and error bar. Below this, two horizontal bars are drawn to represent the resolution-corrected velocity width and its error. The tick marks on the dashed Y=0 line show the region fitted. 19 95ApJS. . .99. . .67N = -1 correlation peak(see§4.4).Although theerrorbarsarelargerandscatterincreasesforlowerR,nosignificant systematicdeviationsarepresent.(Spectra with dinbelow50%oftheinstrumental resolutionareexcludedfromthisplot.) our KPNOdatawerebroadenedby arangeofanddegradedbyaddingnoiseinvaryingamountsto simulategalaxyspectra.Eachpointrepresentsthe from (Tout/^in1forinputvaluesabove 50%oftheinstrumentalresolution.\n(b)sameratioisplotted againstR,thesignal-to-noiseratioofcross- mean of250spectra,andtheerror baristheerroronmean.In(a)ratioc^/aplottedagainst a.Notethattherearenosignificantdeviations templates withpublishedvaluesshowedgoodagreement, trum ofthetwilightsky,whichservedasazero-velocityrefer- mean difference0.3kmsandrms13. ence. Comparisonofthemeasuredradialvelocitiesfor The shiftsweredeterminedbycross-correlationwithaspec- object spectraexceptthattheywereallshiftedtozerovelocity. m transform ofequation(1)givesC(k)=G(k)T*(k),where vantage ofallowingasimplerampfiltertobeappliedC{k) is thecomplexconjugateofT(k).Thesehaveaddedad- capitals denoteFouriertransforms,kisfrequency,andT*(k) performed usingfastFouriertransforms,sincethe 82 0m m Fig. 5.—Resultsoftestingthecross-correlation methodusingourartificialdataset(see§4.6),shown foreachspectralregion.Stellartemplatesfrom Stellar templatespectraweretreatedinthesamewayas For computationalconvenience,thecross-correlationswere ° 0510 15 202530 ° 050100150200250 300 . I.H■»JllIII,1 ■ill. ..fcIIII1!IIl.l » «*■-i._i...i © American Astronomical Society • Provided by theNASA Astrophysics Data System Cross-Correlation PeakS/N:R NELSON &WHITTLE _1 galaxy andtemplatespectrawouldgiveaGaussiancross-cor- half-maximum heightareincludedinthefit.Inprinciple,ideal Gaussian whosebaseisatthezerolevel.Onlypointsabove cross-correlation functionisidentifiedandfittedwitha where Visthetotalnumberofbins). with Gaussiansofo*^50-300kmsinthespectraldomain quency fluctuations,arisingfromunwantedresidualbroad before transformingbacktoc(n).Thefilterremoveslow-fire- (i.e., Gaussiansofv=N/lno*inthefrequencydomain, emission orabsorptionfeatures,andhigh-frequencynoise.To interest, wecarefullyavoidedfilteringfrequenciesassociated minimize theinfluenceoffilteronabsorptionfines k After returningtothespectraldomain,mainpeakof Vol. 99 19 95ApJS. . .99. . .67N with slightmodification. template spectraintroducedistortionstothecross-correlation tions. Inpractice,noiseanddifferencesbetweengalaxy tion. We followthemethoddescribedbyTonry&Davis(1979), function, whichcanbeusedtoestimateerrorsinF*andcr*. plate spectragiveperfectlysymmetriccross-correlationfunc- different a-widthrelationsmustbedefinedforeachspectral ing valueof(7*foundusingthea-widthrelation.Notethat which isfittedusingapolynomial.Foreachgalaxy,thewidth this cross-correlationgivesawidth,associatedwiththeinput

200 400 600 800 1000 1200 200 400 600 800 1000 1200 1400 1600 Our [OUI] FWHM (km s“1) Our [OUI] FW20 (km s""1) Fig. 10û Fig. ¡06

"l-1—« -1 T'1" 1 ~l ~ • r’-'-’-r Worst X,Y quality Worst X,Y quality a (high): • a (high): • / b (mid): • b (mid): • / c (low): o c (low): o

> Ph / % 4 /• / • % TJ0 XJ *- rO 2 (X Dashed line: Y = X Dashed line: Y = X

» * » * * ». i. 200 400 600 800 1000 1200 200 400 600 800 1000 1200 1400 1600 Our [OUI] IPV20 (km s-1) Our [OUI] IPV10 (km s_1)

Fig. 10c Fig. \0d Fig. 10.—Emission-line width measurements for the data presented in this paper compared with published values. The lowest data-quality rating is indicated by the kind of point plotted, {a) FWHM; (Z?) FW20; (c) IPV20; and {d) IPV10. Overall, agreement is good, although there is a slight trend toward higher values of FWHM and FW20 for the narrower lines. This is consistent with the imperfect nature of quadrature subtraction as a resolution correction for the FWHM and FW20 parameters.

Table 3 gives the resolution-corrected line-width parameters with published values (taken principally from W92a), to give for the [O in] profiles shown in Figure 8 (cols. [6]-[9]), and a final, adopted set of [O in] profile width parameters (cols. the [S in] profiles shown in Figure 9 (cols. [10]-[13]). Since [2]-[5]). Data of equal quality are averaged; otherwise the many of the objects have been observed previously, often at data of the higher quality are taken. For this reason, most of higher resolution, we have combined our [ O m ] measurements the final adopted values come directly from W92a (note that

© American Astronomical Society • Provided by the NASA Astrophysics Data System 19 95ApJS. . .99. . .67N 48 47 45 44 43 42 40 NGC6104 39 NGC5953 57 56 54 51 49 41 38 NGC5940 37 NGC5929 36 NGC5548 35 NGC5427 32 NGC5252 31 NGC5194 63 62 61 60 59 58 55 53 52 50 34 NGC5347 33 NGC5273 30 NGC 29 NGC 28 NGC 27 NGC 26 NGC 70 69 68 67 65 64 25 NGC 24 NGC 23 NGC 22 NGC 20 21 NGC 19 18 17 16 15 14 12 11 13 10 9 8 7 MKN 6 MKN 3 MKN 1 NGC 7743 NGC 7682 NGC 7672 NGC 7319 NGC 7213 NGC 7212 NGC 6814 NGC 6703 NGC 6702 NGC 6482 MKN 686 MKN 622 MKN 573 MKN 533 MKN 506 MKN 372 MKN 348 MKN 270 MKN 176 MKN 78 MKN 10 NGC 7603 MKN 1040 MKN 1018 MKN 917 MKN 766 MKN 590 NGC 3786 NGC 3516 NGC 3362 NGC 3227 NGC 3185 NGC 3031 NGC 2992 NGC 2841 NGC 2273 NGC 2110 NGC 1667 NGC 1566 NGC 1386 NGC 1358 NGC 1320 NGC 1275 NGC 1068 NGC 788 NGC 1052 NGC 513 Name (1) 4579 4388 4339 4051 4941 4593 4151 4117 3998 3982 © American Astronomical Society • Provided by theNASA Astrophysics Data System 10098 ±22 11037 ± 12762 ± 8319 ±7 4251 ± 4505 ± 8751 ± 4037 ±14 8726 ±14 6762 ±4 4991 ±2 3855 ± 3137 ± 2009 ±6 2550 ±3 2733 ±7 2295 ±7 6865 ±7 2507 ±2 8274 ± 4008 ± 6915 ±206946dr60 7936 ± 1629 dr61649±13 1562 ±12 2447 ±4 1334 rb32 1155 ±2 2707 ±5269012 2245 ±5231213 2249 ± 2739 ± 4061 ±5 7259 ± 1078 ±4 1139 zb4 1024 ± 1229 ± 1929 ± 5772 ±4 1307 ±19 981 ±8 985 ±38 622 ±5 881 ± Med. (2) [om] 10117 ±25 10958 ±22 12778 ±15 3127 dr17 8753 dr13 8767 dr18 4031 dr30 6782 ±10 8306 ±10 4521 ±13 1669 dr45 2049 ±12 5013 ±12 2753 ±12 2334 ±13 6857 ±25 3872 ±13 4279 ±13 7981 ±13 2593 ±15 2463 ±13 2462 ±10 8273 ±15 4006 ±10 7283 ±15 1435 ±28 1173 ±8 2252 ±12 2733 ±13 4062 ±10 1090 ±12 1142 ±10 1043 ±17 1234 ±10 1939 ±10 5779 ±12 1394 ±55 973 ±20 991 ±25 642 ±18 822 ±17 C80 (3) 5109 ±18 6771 ±45 4784 ±40 7930 ±50 8673 ±32 4537 ±15454312 4092 ±50 1580 ±27 4973 ±174999rb22 5166 dr13 2749 ±2828059 1093 ±2511679 5240 ±95 5908 ±75582518 7335 ±22734317 461 dr25459rb7 657 ±22 981 ±40 [sin] C80 (4) ± 17100618 Redshifts: [Ohi],[Sih],Stars,andHi 10338 dr73r 11038 dr19 4754 dr18 5117 dr12 8915 ±37 8011 ±21 8447 dr30r 8645 ±23 4019 ±17 4069 ±20 6706 rb22 2374 ±12 3956 ±23 4238 dr15 5150 rb11 1564 ±12 1994 dr8 2511 ±22 7988 rb20 2544 ±20 1138 db9 1089 ±25 2699 ±13 2339 ±18 5253 ±44 1880 ±16 1149 ±8 -39 ±9 714 ±8 649 ±13 Ca T (5) TABLE 4 11099 dz16 10174 ±33r 12779 dz20 8829 ±29 4740 rb14 8447 ±24 4545 dz15 3101 ±9 8769 dz23 4010 dr22 6695 dr27 7997 zb14 1790 dr10 2490 rb8 5051 dr29r 2729 ±7 2398 dr8 6918 dr19 2515 ±20 4264 ±9 1671 zb8 1995 rb7 2461 dr14r 1045 rb18 2715 ±15 8294 ±15 2335 ±20 4050 ±13 2782 ±11 4047 ±12 5831 ±7 7036 dr10 1090 ±7 1123 dr8 1533 dr7 1268 ±8 1132 rb6 2330 ±10 1450 ±15 7339 ±15 1139 ±12r 1239 ±8 1895 ±7 984 ±9 693 dr11r 873 ±15 6 _(J . Mg b 10174 ±33 11074 ±43 12779 ±20 Combined Pub. 4740 ±14 8645 dr23 4544 rb9 3101 ±9 8769 dr23 5117 dr12 4042 ±42 8862 dr61 6702 ±17 8011 dr21 2374 dz12 3956 dr23 8447 dr24 4257 ±8 5150 ±11 7997 d:14 4019 ±17 4754 dz18 1790 ±10 2398 dz8 6918 ±19 4999 zb22 7036 dz10 7988 ±20 1671 ±8 1564 dr12 1995 ±5 2492 zb8 2729 dr7 2544 ±20 2515 ±20 8294 ±15 2335 ±20 4050 ±13 1090 rfc7 1130 ±6 1533 ±7 1268 ±8 1006 ±18 1060 ±15 1132 dr6 2706 ±10 2332 ±9 2796 ±16 5253 ±44 1450 db15 4047 ±12 5830 ±7 7341 rb11 1167 ±9 1239 ±8 1893 ±6 1149 ±8 -39 ±9 459 ±7 984 ±9 714 ±8 873 ±15 649 ±13 (7) (81. 11092 4797 4077 2009 2608 4587 4018 1280 ±18 1009 dr2329 2368 1533 1139 1594 1227 -35 959 635 845 dr 268 ± 2331 J®L_ 32 28 29 28 28 28 24 28 24 30 24 28,11 28 28 10 Ref. 10208 dz6 12900 ±502PS: 8736 ±20- 2386 ±20 6946 ±17 8753 ±252PS 4855 ±121PA 5120 ±42PA 4045 ±202PS: 6611 dr8IPS: 1935 ±10 2561 dr15 5149 dr14 2621 dr20 2492 dr6 2517 dr10 2723 ±4 8324 ±10 8777 ±10IPA-ab 4535 ±15IPS 8214 ±302PA: 5850 ±10lPS:-ab 3955 ±15CPX 1792 dr272PS: 1563 dr42PS 1100 ±85 1111 ±7 1519 dr6 1040 dr50 1109 dz6 2503 ±75 4547 ±75 1662 ±302PS: 1230 ±4 2314 ±13 4225 ±202PS: 1157 ±12 1840 ±4 1137 ± 1507 ± 4993 ±72PS 6964 ±30CPX 7910 ±25CPX 1496 ±5 7317 ±241PA: -34 ±4 995 dr32PS 463 dz3 725 ±5 638 ±3 (10) (H) cz Profile 2PS CPX 2PS-WR¿ 1PA 2PS 2PA: 2PA 2PS 1PA 1PA: 2PS 2PS 2PS 2PS IPS: 2PS 2PA: 2PS 2PS: 2PA 2PS 2PS 2PS 2PA 2PS-WB: 2PS-WR; 1PA: HI - J12L 9 9 9 9 20.13.1 9.20.1 9 9.18.1 9.5.1 16 27 15,23 22,25 21 5.1 2 9,15 9 9 3 9,4,16 9 9,20 9.20.1 9.13.1 20.13.1 13.33.1 13.1 16 14 19.1 14 17 9 9,20,1 9 9 9.20.1 9 9 9.12.1 15 Ref. 19 95ApJS. . .99. . .67N the resolutioncorrections.Fornarrowestlines,quadrature the W92acompilationhadalreadyincludedvaluesfrom ters, withrmsscatter—10%.Thereissometendency,however, profile). Reasonablygoodagreementisfoundforallparame- the AATdata,usuallyasquality“a”). within theirestimatederrors. plotted againstredshift.Thelowest data-qualityratingisindicatedbythe subtraction systematicallyoverestimatesthecorrectedvalues narrowest lines.Thisisconsistentwiththeimperfectnatureof for ourvaluesofFWHMandFW20tobeslightlyhighthe AAT duplicatedata,andMrk78,whichhasapeculiardouble from theliterature,mostlytakenW92a(excluding kind ofpointplotted.Thereisexcellent agreement,withmostvaluesfalling Figure 10comparesournew[Oin]linewidthswiththose Fig .11.—DifferencebetweenMg bandCantripletstellarvelocities, -1 (30) vanderKruit&Freeman1984;(31)Whiteetal.1983;(32)WhitmoreKirshner1981;(33)WilliamsRood1987. (15) Huchtmeier&Richter1989;(16)Hutchings(17)Knapp,vanDriel,Woerden1985;(18)Mirabel1982;(19)Sanders Dressier &Sandage1983;(11)1984;(12)GiovanelliHaynes1985;(13)Heckman,Balick,Sullivan1978;(14)Huchtmeier 1982; Biermann 1983;(6)Bushouse1987;(7)Danziger,Goss,&Wellington1981;(8)Daviesetal.(9)deVaucouleurs1991(RC3); (10) and Mgbredshiftstheirerrors.Col.(7):Combinedstellarredshift.Cols.(8)-(9):Publishedredshiftreference.(10)-(12):Hi 21 cmredshift,profiletype(seetext),andreference.(Note:Allredshiftsareheliocentricczexpressedinkms.) 1978; (26)Smith,Heckman,&Illingworth1990;(27)SulenticArp1983;(28)Terlevich,Diaz,Terlevich(29)TonryDavis 1981; 1988; (20)Mirabel&Wilson1984;(21)Peterson1979;(22)Shostak1974;(23)Reifetal.1982;(24)Schechter1983;(25) 85 84 83 81 80 82 79 78 77 76 74 73 75 72 71 Col. (1):Name.Cols.(2)-(3):[Om]profilemedianandC80redshiftstheirerrors.(4):[Sni]redshift.(5)-(6)-Cantriplet References.—( 1)ErrorestimatedfromHiprofile;(2)Axonetal.1995;(3)Balkowski1972;(4)Bicay&Giovanelli1986;(5)Bieging & ARP 107A MCG 8-11-11 AKN 347 MKN 1157 PKS 2152-69 3C 120 UGC 6100 UGC 3995A UGC 3223 m ZW55N IC 5063 AKN 79 MKN 1126 MKN 1066 F 341 Name (1) © American Astronomical Society • Provided by theNASA Astrophysics Data System 10366 ± 8440 =b68495±25 8852 ±5 4746 ±6 4671 dh6 4896 d= 3432 ±6342223 6820 ±5683413 4498 ±4 3145 ±6 3523 ±5 Med. (2) [om] 10367 ±13 8871 ±40 4749 ±12 4675 ±15 4903 ±10 4501 ±12 3155 ±8 3567 ±15 C80 (3) KINEMATICS OFSEYFERTGALAXIES.I. 4524 ±23 3625 ±28361913 [sm] C80 (4) 6118 ±33r 4528 ±12 5225 ±14 TABLE 4—Continued Ca T (5) 10382 ±14 8450 ±30 8832 ±17 4721 ±10 4698 ±18 4817 ±15 6798 ±18 4527 ±12 3410 ±10 3170 ±15 3628 ±16 Mg b tions byWhittle(1985). parameters, asexpectedfromtheanalysisofresolutioncorrec- Interestingly, nosuchoffsetsareseenfortheIPV10andIPV20 of FWHMandFW20(e.g.,Whittle1985;Veilleux1991b). C80 for[Sin](cols.2-4),aswellstellarvelocitiesfrom includes ourmeasurementsofC80andCmedfor[Oill] measures ofnuclearredshift,bothgaseousandstellar.Table4 data-quality ratingforcz*isindicated bythekindofpointplotted.There 21 cmvelocitiesfor2PSHIprofiles (see§6),plottedagainstredshift.The is goodagreement,withmostvalues fallingwithintheirestimatederrors. (6) In additiontolinewidths,ourdataprovideanumberof Fig. 12.—Differencebetweenour stellarvelocitiesandpublishedHi 10382 ±14 Combined 8450 ±30 8832 ±17 4721 ±10 4698 ±18 4817 ±15 3410 ±10 6798 ±18 5225 ±14 4528 ±8 3170 ±15 3623 ±10 (7) ËL 7705 Pub. 6. REDSHIFTS Ref. (9) 10446 9900 ±50 8718 ±302PA: 4747 ±50CPX 6147 3380 ±162PA 4554 ±142PS9,13,1 3191 ±112PA9 (10) (H)(12) cz ProfileRef. HI - 9 9,20,1 9,7 20 99 19 95ApJS. . .99. . .67N -1 1 1- the literature.TheheliocentricHivelocity(linecenter,with Huchtmeier &Richter(1989 )suggeststhattheRC3errorsare ( 1990).Cross-checkingthese valuesusingthecompilationof after RC3);thesewereoriginally compiledbyBottinellietal. the galaxysystemicvelocity,wehavegatheredHidatafrom H ivaluesweretakenfromde Vaucouleursetal.(1991,here- error) andreferencearegiven incolumns(10)and(12).Most dividual measurements. with mean~-7±8kmsandrmsscatter~32 s" measurements), consistentwithourerrorestimatesforthe in- (—2 ±7kms“and~25s,excludingquality “c” in theCaiitripletandMgbregions.Agreementisgood, tain publishedabsorption-linevelocitiesandtheirreference. Figure 11showsthedifferencebetweenvelocitiesmeasured emission, aremarked“r”for“reject.”IfbothCantripletand the CaiitripletandMgbregions(cols.[5]-[6];notethat value whichisgivenincolumn(7).Columns8)and9con- Mg bvaluesareusable,aweightedmeandefines“combined” values, duetolowsignal-to-noiseratioorcontaminationby all velocitiesaregivenasheliocentriccz).Highlyunreliable 100 To helpcompareourmeasurementswithotherestimates of © American Astronomical Society • Provided by theNASA Astrophysics Data System -1 (12) Hutchings1989;(13)Mirabel&Wilson1984;(14)Peterson1979;(15)Shostak1974. Giovanelli &Haynes1985;(9)Goad,DeVeny,Goad1979;(10)Huchtmeier1982;(11)Richter1989; (4) Bushouse1987;(5)deVaucouleursetal.1991(RC3);(6)Fisher&Tully1981;(7)GiovanelliHaynes1983;(8) in moredetailTable1ofW92a.) col. (3)-(7).{Note:Unitsarekmsforcols.[3]-[5].Qualityfactors[a=good,bfair,cpoor,rreject]defined corrected rotationamplitude.Col.(7):Galaxyinclination(indegrees;0=face-on).Cols.(S)-(l1):Referencesfordatain rotation amplitudefromopticalobservations.Col.(5):Adoptedgalaxyamplitude.(6):inclination- 20 19 18 17 16 15 14 13 12 11 10 References.—(1) Baldwinetal.1980;(2)Blackman1982;(3)Bottinelli,Gouguenheim,Fouqué,&Paturel1990; Col. (1):Name.(2):Seyferttype.(3):GalaxyrotationamplitudefromHIobservations.(4): Note.—Table 5followstheformatofTable2inW92aforadditionalobjectsnotincludedthatearliersample. 9 8 4 7 6 5 3 2 1 3C 120 ARP 107A MKN 917 MKN 686 NGC 7672 UGC 6100 UGC 3995A UGC 3223 NGC 6104 NGC 5953 NGC 5427 NGC 5940 NGC 5347 NGC 5194 NGC 4941 NGC 4117 NGC 3982 NGC 3362 NGC 1275 NGC 513 Name TypeAViAV^Refs. (!) (2)(3)(4)(5)(6)(7)(8)(9)(10) Hoptrotot 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.5 2.0 2.0 2.0 2.0 1.2 1.2 1.9 2.0 1.5 1 Seyfert GalaxyRotationandInclination kms"deg.AVhi-¿Woptt 225 b 319 a 375 c 373 c 208 a 234 a 215 a 230 c 144 a 195 a 464 r 399 r 430 r 261 r NELSON &WHITTLE 162 b 300 c 170 a 225 b 162 b TABLE 5 373 c 208 a 319 a 215 a334 300 c 375 c 230 c 144 a 183 a 234 a468c as possible,usingpublishedHIprofiles.Onlysymmetrictwo- tempted toclassifytheHiprofileshapesforasmanyobjects from relativelyisolatedundistortedgalaxies,wehave at- that noHiprofilewasavailable. Ourclassificationsaregiven H isystemicvelocities,for iprofilesclassifiedas2PS.Over- in column(11). lon indicatesanuncertainclassification, andadashindicates absorption; -WRand-WBdesignateredbluewings.A co- errors, usingtheoriginalpublishedvalueswhenavailableor cases, therefore,wehavegivenwhatfeeltobemorerealistic tional papers,evenforsinglemeasurements.Inanumberof our ownestimatesfrompublishedHIprofiles. metric profiles;CPXforcomplex-abdesignatesH iin files; 2PAand1PAfordouble-peakedsingle-peakedasym- and IPSfordouble-peakedsingle-peakedsymmetric pro- velocity. Wehavebuiltontheprofileclassificationscheme de- peaked profilesarelikelytogivecleanestimatesofsystemic frequently smallerthanthosegivenintheoriginalobserva- scribed byHeckman,Balick,&Sullivan(1978),namely, 2PS 362 d 519 d 336 b 306 b 234 b 490 c 614 e 372 a 608 c 534 c Figure 12comparesour“adopted” stellarvelocitywiththe Since reliableHisystemicvelocitiescanonlybeobtained 46 b 56 b 58 b 50 a 42 a 38 b 20 b 22 a 63 b 32 a 40 a 59 a 30 a 63 a 64 r 35 r 3,8 13 11,3 13,3 12 3,13 15 14 6 10,7 5 12 5 5 5,11 1 9 5 5 15 5 5 5 5 Vol. 99 19 95ApJS. . .99. . .67N -1 -1 tion-corrected rotationamplitude AF^t(col.[6]);andthein- combination ofAFand i, AF(col.[5]);theinclina- optical major-axisrotationamplitude AF(col.[4]);the (col. [2]);observedHIline width AFi(col.[3]);observed closely followTables2,3,and4inW92a,thatpaper and theirqualityratings.Briefly,Table5includesSeyferttype should beconsultedforadetaileddiscussionoftheparameters as asupplementtotheoriginaldatabase.Tables5,6,and 7 clination i(col.[7]);references aregivenforHIlinewidth, combine ourmeasurementsofstellarkinematicswith the objects whoseactiveandhostpropertiesnowneedtobeadded found intheW92acompilation,weobservedanadditional 20 nuclear activeproperties.Althoughmanyofoursample are W92a compilationofSeyferthostgalaxyproperties and nuclear gravitationalpotentialinSeyfertgalaxies,weplan to No. 1,1995 genuinely discrepantpoints(e.g.,NGC2273)whichmayindi- clean stellarmeasurement. cate unrelaxedHIand/oradustynucleuswhichprevents our stellarvelocitymeasurements.Interestingly,thereareafew rms difference~22kms,confirmingthebasicintegrityof all, theagreementisgood,withmean7±5kmsand opt Hrot opt H -1 Since ouroverallpurposeistoexploretheimportanceof al. 1985;(5)Nelson&Whittle1995;(6)SandageTammann1981(RSA);(7)1992a,fromArp1966;(8)PSS Oand/or poor, r=reject)aredefinedinmoredetailTable1ofW92a.{Note:LuminositiescalculatedusingH50kmsMpcandq 0.0. Quality correction toremovedisklight,estimatedfromcol.(3).Col.(13):BulgeabsolutemagnitudeinB,Cols.(14)-(16):Referencesdatacols. (2)-(5). E prints. factors [a=good,bfair,cpoor,rreject]aredefinedinmoredetailTable1ofW92a.) Note thatthereferencesequenceincol.(14)followstype(2)ifmorethanoneisgiven.Qualityfactors(a=good,b =fair,c Total correctedmagnitudeinB.Col.(11):absoluteB,usingdistancesfromTable4,col.(3).(12): Magnitude (T). Col.(4):Disturbanceclass(DC)andinteraction(IAC).(5):TotalmagnitudeinB.Cols.(6M9):Magnitudecorrections fornuclear nonstellar continuumandemission-lineflux(Am^),redshift(Am*),internalabsorptiontoface-on(Aw,),Galactic(Ara ). Col.(10): 0Q G 20 3C120SO: 19 UGC6100SAab 18 UGC3995ASc 17 UGC3223SBa 16 ARP107ASc,S? 15 MKN917 14 MKN686 13 NGC7672 12 NGC6104 11 NGC5953 10 NGC5940 9 NGC5427 8 NGC5347 6 NGC4941 4 NGC3982 2 NGC1275 5 NGC4117 3 NGC3362 References.—(1) Thispaper,fromPSSOand/orEprints;(2)deVaucouleursetal.1991(RC3);(3)1976(RC2);(4) Keelet Col. (1):Name.(2):RevisedHubbletype,followingdeVaucouleurs1959.Morethanonetypegivenifsourcesdisagree.(3): stage 7 NGC5194 Note.—Follows theformatofTable3inW92aforadditionalobjectsnotincludedthatearliersample. 1 NGC513 JD 7. SUPPLEMENTTOTHEW92aCOMPILATION Name © American Astronomical Society • Provided by theNASA Astrophysics Data System SBa Sb S? SAa: pec SBab Type SABa SAc pec SBb,SBab pec SAbc pec SABab,Sab SO: Sbc,SABb: SABc Epee SAb (2) -2.0 b -2.3 b -5.0 c 5.0 b 2.0 b 1.0b 1.0b 2.0 a 3.0 a 4.0 a 3.5 a 5.0 a 2.0 a 2.0 a 5.0 a 3.0 a 1.0 a (1) (1) 1.0 c (3) (4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16) T DC,Bt4mA4mR4m,4meMb4mBuiRefs. IAC TotalBulgeTypeBDC,IAC T 2,2 4.2 3.4 4,5 2,1 2,1 4,5 3.1 2.3 5,3 3,2 1,1 2.5 2,1 2,2 1.2 1,1 1,1 1.3 1,2 KINEMATICS OFSEYFERTGALAXIES.I. 14.30 a 14.30 a 13.28 a 13.83 a 14.40 b 14.70 b 14.60 a 13.58 a 14.21a 13.06 a 14.32 a 11.93 a 13.40 a 14.04 a 11.86 a 13.48 a 13.90 b 11.90 a 12.64 a 8.95 a Seyfert MorphologyandLuminosity -0.37 -0.06 -0.10 -0.04 -0.01 -0.02 0.090.02 -0.03 0.050.11 -0.01 0.020.06 (0.00) (0.00) (0.00) 0.030.09 (0.00) (0.10)(0.14) (0.00) (0.00) (0.00) 0.00 0.00 0.00 0.00 0.00 (0.13) (0.14) 0.15 0.09 0.03 0.06 0.19 0.11 0.01 0.02 0.00 0.01 0.02 0.01 0.05 0.08 0.04 TABLE 6 0.18 0.13 0.25 0.00 0.07 0.02 0.20 0.24 0.04 0.00 0.05 0.08 0.24 -1 C were observedprimarilytoprovide acheckonourkinematic galaxies forwhichwehaveobtained spectroscopicdata.These ble 6includesHubbletype,Tclass,disturbanceclass(DC), biguous, U=unresolved,Sslightlyresolved(col.[6]); the totalabsolutebluemagnitude,Mot,atype-dependentcor- 4o =0. luminosities arecalculatedusing H=50kmsMpcand and othercommonnames(col.[10]-13).Alldistances and L =large(10"-15"),Mmedium(6"-8"),Ssmall(2"-4"), and emission-linefluxes,includinganoteoftheaperturesize, and [5]);radiomorphology:L=linear,Ddiffuse,A am- distance, correctedforVirgocentricflow(cols.[2]and[3]); (cols. [14]-[16]).Table7includesheliocentricredshift and ing absolutebluemagnitudeofthebulge,M(cols.[11]- shift Am*,internalabsorptionAm,,andGalactic and interactionclass(IAC)cols.[2],34];totalblue optical rotation,andinchnation(cols.[8],910]).Ta- fluxes for[Om]X5007andHß,luminosity in] radio continuumfluxandluminosityat1415MHz(cols. [4] rection toremovethediskcontribution,Am,andresult- magnitude, B,withcorrectionsfornonstellarlightkmred- A5007 (cols.[7]-9);referencesforredshift,radioproperties, km, togiveacorrectedtotalmagnitude,B(cols.[5]-10); [13]); referencesaregivenforHubbletype,B,DC,andIAC 0 hnX bul TA GT T In Table8wepresentgeneral informationonnon-Seytert 0.57 0.00 0.09 0.43 0.03 0.37 0.00 0.11 0.00 0.10 0.10 0.09 0.00 0.00 0.01 0.00 0.21 0.00 0.05 0.75 14.11b 13.78 a 14.08 a 14.47 b 12.91 a 13.21 a 14.14 a 13.45 a 13.41 b 13.97 a 12.88 a 14.22 a 11.78 a 13.30 a 11.68 a 13.78 a 11.81a 13.31a 11.85 a 8.93 a -22.58 b(-1.02)(-21.56) -20.11b -1.54-18.57b -21.74 a-1.02-20.73 -21.38 a-1.02-20.36b -22.27a (-1.02)(-21.26) -20.49 a-1.02-19.47c -22.73 a-0.61 -22.24 a-1.23 -22.08 a-2.54 -21.68 a-1.02 -22.49 a-1.23 -22.07 a-2.54 -20.51 a-1.23 -21.29 a-1.97 -20.20 a-1.23 -19.13 a-0.57 -20.19 a-1.74 -22.87 a-2.54 -23.35 a0.00 -22.04 b-1.54 -22.12 b -19.54b -21.26 b -18.55 b -20.49 b -21.01 a -19.53 a -19.27 a -19.32 a -18.96 a -18.45 a -20.33 a -23.35 c -20.66 b 3 2 2 2 6,2 3 6,2 2,6 5 6,2 2 5 2 2 2 2 2 2,6 2 2 8,7 1 5 5 5 5 5 1 1 7 101 19 95ApJS. . .99. . .67N cz. velocities (notgiven)fromNolthenius 1993.Col.(6):Heliocentricredshift Total magnitudeinB.Col.(5): correctedabsolutemagnitudeinB NGC 7213 using distancesestimatedfromredshifts givenincol.(6)orfromgroup PKS 2152-69 NGC 7743 NGC 6703 NGC 6702 NGC 6482 NGC 4579 NGC 4339 NGC 3998 NGC 3031 NGC 2841 NGC 1052 102 Col. (1):Name.(2):Activityclass. Col.(3):Hubbletype.(4): _1-1a f -1-2-14 -1 1 al. 1985;(17)Kinman1983;(18)Lacyétal.1982;(19)Morris&Ward1988;(20)NeffHutchings1992;(21)Nolthenius1993;(22)Pedlar etal. common names.(Note:LuminositiesarecalculatedusingH=50kmsMpcandq0.0radiospectralindexa-0.7[F„ocv].Quality (2)-(8). Aperturesizeforemission-linefluxesgivenincol.12:S=small(2”-4*);Mmedium(6'-8');andLlarge(ICT-IS*).Col.(13): Other Ford etal.1985;(12)Geller&Huchra1983;(13)Goodrich1989;(14)Hummel,vanderHulst,Keel1987;(15)Hutchings(16) et De Robertis1988;(7)deVaucouleursetal.1991(RC3);(8)Doroshenko&Terebizh1981;(9)DresselCondon1978;(10)Edelson1987; (11) factors [a=good,bfair,cpoor,rreject]aredefinedinmoredetailTable1ofW92a.) Col. (6):Radiomorphology:U=unresolved;Sslightlyresolved;Llinear,Ddiffuse;Aambiguous.Multipleentriesaregiven if morphology isdifferentonscales.Cols.(7)and(8):[Oin]X5007Hßemission-linefluxesinergsscmX10.Col.(9): logio redshift andVirgocentricinfallmodel.Col.(4):1415MHzradiofluxinmJy.(5):logjrest-frameluminosityW Hz. [O m]\5007luminosityinergss'usingdistancesfromcol.(3).Noreddeningcorrectionshavebeenapplied.Cols.(10)-(12):Referencesfor cols. 1992a. 1990; (23)Stauffer1982;(24)Stirpe(25)Ulvestad&Wilson1989;(26)Ungeretal.1987;(27)Walker,Benson,Unwin(28)Whittle 0 0 Name 1 12 20 16 15 14 13 11 19 18 17 (1) References.—(1) Adams&Weedman1975;(2)Anderson1970;(3)Blackman1982;(4)Condonetal.1990;(5)Dahari1985;(6) & Col. (1):Name.(2):Heliocentricredshift,cz,inkms".Pairorgroupredshiftsareindicatedby“p”“g.”(3):DistanceMpcusing Note.—Follows theformatofTable4inW92aforadditionalobjectsnotincludedthatearliersample. MKN 686 NGC 7672 NGC 6104 NGC 5953 NGC 5940 NGC 5427 NGC 5347 NGC 4941 NGC 4117 NGC 3982 NGC 3362 NGC 1275 NGC 513 Name czcDSlogLRadio ARP 107A MKN 917 NGC 5194 3C 120 UGC 3995A UGC 3223 UGC 6100 (1) (2)(3)(4)(5)(6) HV1415l © American Astronomical Society • Provided by theNASA Astrophysics Data System Basic DataforNon-SeyfertGalaxies Activity Normal Normal LINER LINER LINER LINER LINER Normal LINER LINER LINER LINER 1-1 Class 10425 10565 g215.7 km s'MpcmJyWHzMorph (2) 2615 p 9920 4750 4725 4175 g 4045 8380 2385 8320 5260 5950 8720 7265 1110 1320 g 1280 g 1940 g 460 g TABLE 8 + 197.2 213.7 148.4 174.4 180.9 169.6 108.4 121.3 SA0" SB0 SAa: SA0“ E: E: SABb EO E4 SAO SAab SAb Type 81.9 99.0 94.1 91.6 47.1 58.4 23.7 38.0 57.6 25.0 11.0 (3) <1.5 u<21.92 2.90 a 14.2 a 11.6a 170 b 280 c24.12 7.1b 2.8 b 5.1b 1.5 b 8.5 a 3.6 a 3.4 c 54 a22.16L?-D? 59 c 14.3 12.38 10.48 11.01 12.32 13.23 12.35 12.26 11.41 11.61 10.09 7.89 (4) b t 21.18 21.76 22.69 21.08 21.13 20.98 20.69 22.61 23.38 23.02 19.72 20.58 Seyfert RadioandEmission-LineLuminosities -20.90 -21.77 -20.98 -21.64 -21.85 -22.13 -22.82 -21.51 -19.88 -20.51 -20.03 -19.61 M b (5) U u U L S s S NELSON &WHITTLE _1 (km s) 2365 4712 8440 3922 CZHC 1792 1792 1519 1281 1040 1507 -34 (6) 638 T5007 FH0loßLgooyRefs. 4.8 b8.5 6.9 b0.51b 9.4 b 8.2 a2.70 3.5 a9.7 6.8 c0.70 7.3 c0.90 22 b 12 b 11b 50a 14b 15 c0.50 (7) (8)(9)(10)(11) 14-1 X10" ergsczS,R.M. 1415 TABLE 7 5.1b 1.3 b 30 bv42.2628 and notetheprincipalselection effects. our sampleproperties,compare itwiththesampleofW92a, (Nelson &Whittle1995),here wegiveabriefdescriptionof total (NLR+BLR)H0luminosity,radiocontinuumlumi- galaxies. tive nuclearpropertiessuchasNLR[Om]À5007luminosity, dence ofnuclearactivityandhostpropertiesSeyfert vide apowerfuldatasetwithwhichtostudytheinterdepen- (Tables 3and4);nuclearstellarkinematics2 4); morphological type,andinclination(Tables56); ac- host galaxypropertiessuchasrotationamplitude,luminosity, range ofproperties:kinematicsionizedgasintheNLR nosity, andradiomorphology(Table7).Togetherthese pro- technique. TheHubbletype,blueapparentmagnitude,and ing distancesdeterminedfromgroupvelocities(notgiven). absolute magnitude(col.[5])wascalculatedinafewcasesus- redshift (cols.[3],[4],and[6])weretakenfromRC3.The Although amorecompleteanalysis willbegiveninPaperII Overall, oursampledatasetincludesinformationonawide 40.48 40.71 41.59 41.47 41.09 41.30 39.14 40.17 40.06 41.38 41.85 7 7 3 7 7 7 7 21 15 21 7 7 21 21 7 7 7 12 12 8. SAMPLECHARACTERISTICS 26,27 25 25 20,25 10 14 25 25 25 22 11 10 8 (L) 24 (S) 6 (S) Refs. (Ap) 1,18 (L) 16 (M) 23 (M) 5 (S) 2,1,18 (L) Fgoo/.H/S 16 (S) 19 (M) 16 (M) 13 (S) 17 (?) (12) W 233,MCG5-26-24 H Zw14,U3087 A 0456+04 N5695,U9421 MCG 2-59-45 IRAS 10587+4555 A 0741+29 MCG 5-53-9,U12149 U10309 ARP 91A,U9903 ARP 85,U8493 3C 84,Perseus,A U 9876 ARP 271A U 8805 U 7112 U 5857 AKN 41,U953 Other Names U 6918 (13) Vol. 99 19 95ApJS. . .99. . .67N -1 -1 _1 No. 1,1995 tra (see§§2and3).Forexample,thedistributionofredshifts faint hostgalaxiesandstrongtype1Seyfertswithdifficultspec- the W92asampleofSeyferts(seeFigs.1-15andTable5in bution foroursampleissimilartotheW92a(median lute magnitudesareessentiallyidentical.Thereare,however,a width tailforafewobjectsandpossibleslightshifttolower principally gravitational,whilethebroader[Oin]distribution broader distributionandhightailfor theemission-linewidths. ter. Dataofquality“a,”“b,”and“cf ’arerepresentedbythedashed,dotted, few differences,mostofwhichstemfromouravoidance W92a). Forexample,thedistributionsoftotalandbulgeabso- our sampleof66Seyfertgalaxiesareverysimilartothose 2.50 =316kmsandstandarddeviation0.20). velocities forthebulkofsample.The[Oin]FWHMdistri- is consistentwithadditionalfactors,givingbothahighline and solidlines,respectively.Note thesimilarmeans,withsomewhat dard deviation0.14.Forcomparison.Figure13èshowsthedis- gram oflogFWHM(stars)(2.35Xo*)isshowninFigure\3a FWHM (bottom),plottedforthe66 galaxieswithqualities“c”orbet- tribution of[Oin]FWHMforthesamesample,withmedian The distributionhasamedianof2.51(323kms)andstan- breakdown byqualityfor0*is22:30:14:7a:b:c:r.Ahisto- of themedianssupportsnotionthatgasvelocitiesare 2.47 (296kms)andstandarddeviation0.23.Thesimilarity used todistinguishqualities“a,”“b,”and“c,”respectively. for the66Seyfertgalaxies,withdashed,dotted,andsolidlines of which66yieldedusablestellarvelocitydispersions.The The distributionsofmostparameterslistedinTables5-7for Fig. 13.—HistogramsofFWHM* =2.35Xa*{to/?)and[Oiii]Â5007 Our totalsampleof85objectsincludes73Seyfertgalaxies, © American Astronomical Society • Provided by theNASA Astrophysics Data System -1 Log FWHM(kms) KINEMATICS OFSEYFERTGALAXIES.I. C -1 Ca iitripletobservations.Forthisreason,mostSeyfert1galax- the sevenSeyfertswithquality“r”forMgbobservation, technique. Wehavealsomeasuredwidthsandredshiftsfor the ies wereobservedintheCa11tripletregion. six aretype1or1.5,and,ofthese,threewererecoveredusing they stillpresentamorechallengingobservationthantype2 the presentsample.Consequently,propertiesrelatedto sample. sented asupplementtothe W92a compilationofNLRand these objectscreateanumberofcomplicationsforthestandard has beenmosthelpfulingettingtheSeyfert1dispersions.Of Seyferts. WealsonotethatitistheCa11tripletregionwhich Clearly, evenwithourtendencytopick“easy”type1Seyferts, dispersions ofqualitya:b:c:rare5%:25%:30%:40%(type1Sey- host galaxypropertiesfor20objects notincludedintheearlier taining stellarkinematicmeasurementsfortheSeyfert1galax- minosity. luminosity, andnuclearnonthermalcorrectionstogalaxylu- slightly lowermeanvaluesofHßand[Oin]luminosity,radio level ofnuclearactivityarealsochangedsomewhat,with (median B=13.29comparedwith14.00forW92a).We strong emissionlinesandfeaturelesscontinuum in used, centeringontheCa11tripletabsorptionfeaturesin the large sampleofSeyfertgalaxies.Twospectralregionswere ferts, N=20),42%:38%:14%:6%(type2Seyferts,50). §§ 2and3.Forthegalaxiesweobserved,percentageoftype ies inbothwavelengthregions,giventheproblemsoutlined Seyfert 1-1.5galaxiesdroppingfrom48%inW92ato24% again notethechangeinSeyfertcontent,withfractionof ilarly, oursamplehasapparentlybrighterhostgalaxies [O Hi]A5007and[Shi]A9069 emissionlines.Wehavepre- near-infrared andtheMgbabsorptionlinesinvisual. The velocity dispersionsusingthecross-correlationmethodfor a for W92a(4020kmsand6135,respectively).Sim- for oursample(Fig.14)hasasomewhatlowermedianthan with