Methods in Mind Cognitive Neuroscience Michael S

Total Page:16

File Type:pdf, Size:1020Kb

Methods in Mind Cognitive Neuroscience Michael S MD DALIM #854167 05/22/06 BLUE BEIGE MED.BROWN Methods in Mind Cognitive Neuroscience Michael S. Gazzaniga, editor Gary Lynch, Synapses, Circuits and the Beginning of Memory Barry E. Stein and M. Alex Meredith, The Merging of the Senses Richard B. Ivry and Lynn C. Robertson, The Two Sides of Perception Steven J. Luck, An Introduction to the Event-Related Potential Technique Roberto Cabeza and Alan Kingstone, eds., Handbook of Functional Neuroimaging of Cognition Carl Senior, Tamara Russell, and Michael S. Gazzaniga, eds., Methods in Mind Methods in Mind edited by Carl Senior, Tamara Russell, and Michael S. Gazzaniga The MIT Press Cambridge, Massachusetts London, England © 2006 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. MIT Press books may be purchased at special quantity discounts for business or sales promotional use. For information, please email [email protected]. edu or write to Special Sales Department, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. This book was set in Sabon by SNP Best-set Typesetter Ltd., Hong Kong and was printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Methods in mind / edited by Carl Senior, Tamara Russell, and Michael S. Gazzaniga. p. cm.—(Cognitive neuroscience) ISBN 0-262-19541-0—ISBN 978-0-262-19541-6 (hbk. : alk. paper) 1. Cognitive neuroscience. 2. Magnetic brain stimulation. 3. Neuropharmacology. 4. Developmental psychology. I. Senior, Carl. II. Russell, Tamara. III. Gazzaniga, Michael S. IV. Series. QP360.5.M48 2006 612.8′233—dc22 2005056124 10987654321 Contents Preface: Cognitive Neuroscience: The Evolution of a Discipline vii 1 Transcranial Magnetic Stimulation in Human Cognition 1 Lauren Stewart and Vincent Walsh 2 The Cognitive Neuropsychiatric Approach 27 Philip Shaw and Anthony S. David 3 Cognitive Neuroscience and Nonhuman Primates: Lesion Studies 43 Elisabeth A. Murray and Mark G. Baxter 4 Cognitive Neuropsychology and Computational Modeling: The Contribution of Computational Neuroscience to Understanding the Mind 71 Glyn W. Humphreys, Dietmar G. Heinke, and Eun Young Yoon 5 Skin Conductance: A Psychophysiological Approach to the Study of Decision Making 103 Nasir H. Naqvi and Antoine Bechara 6 Single Neurons and Primate Behavior 123 Robert H. Wurtz and Marc A. Sommer 7 Grid Computing and the Future of Neuroscience Computation 141 John D. Van Horn, James Dobson, Michael Wilde, Jeffrey Woodward, Yong Zhao, Jens Voeckler, and Ian Foster 8 Eye Movements 171 John M. Henderson vi Contents 9 Functional Magnetic Resonance Imaging 193 Peter A. Bandettini 10 Electroencephalography 237 Gina Rippon 11 Imaging Genetics 263 Venkata S. Mattay, Andreas Meyer-Lindenberg, and Daniel R. Weinberger 12 Magnetoencephalography 291 Krish D. Singh 13 The Chemistry of Cognition 327 Stephen D. Hall and Peyman Adjamian Contributors 355 Index 359 Preface: Cognitive Neuroscience: The Evolution of a Discipline Many years have passed since Phineas Gage lost his frontal lobes and gained his unusual kind of fame. Thanks in no small part to this man’s unfortu- nate accident, we now have an unparalleled understanding of the role of the frontal lobes specifically and cortical function in general. Our insatiable thirst for knowledge about cognitive behavior has driven the development of increasingly sophisticated tools to study human cognition; as investiga- tive methods have developed and cognitive processes have been explicated, cognitive neuroscience has flourished and evolved. In the “early days,” studies linking brain activity to a particular behav- ioral response filled the pages of many respectable journals. Examination of the hemodynamic response to motion perception, to tool naming, and so on, aided by evidence from comparative studies, laid the crucial foun- dation for the application of the tools that were to come. Scientific findings are strengthened when evidence from compara- tive approaches or techniques converges. In the case of cognitive neuro- science, empirical support and convergent evidence have come not only from studies of nonhuman primates but also from further afield. Indeed, the gradual convergence of other approaches under the rubric of cognitive neuroscience continues to this day. The book you now hold in your hands contains chapters written by leading authorities in the field who were given the express mandate to describe how their respective techniques could be integrated with a range of other tools neuroscientists have at their disposal. Thus Peter Bandettini (chapter 9) describes the possible routes we can take to link together the hemodynamic response with other measurable indices such as the galvanic skin response (GSR). This symbiotic relation- ship is elaborated by Nasir Naqvi and Antoine Bechara (chapter 5), who explore how the GSR can be used to address higher cognitive functions such as decision making. Krish Singh (chapter 12) details alternative uses of the viii Preface fMRI signal to constrain magnetoencephalography, thereby allowing us to better understand spatial, temporal, and frequency information mediating neural activity. Gina Rippon (chapter 10) highlights the potential benefit of using electroencephalography (EEG) to guide application of transcranial magnetic stimulation (TMS), enabling us to create a virtual lesion not only at a particular cortical site but also at a specific frequency. Lauren Stewart and Vincent Walsh (chapter 1) elaborate on other applications of the TMS technique. Given the gathering consensus in the neuroscience community that differences in the frequency of neuronal oscillations are the “cognitive foot- print” of a particular task, selective disruption at a given frequency will allow us to test the necessity of a cortical network at two distinct levels of analysis. The importance of modeling and interrogating cortical networks is driven home by Glyn Humphreys, Dietmar Heinke, and Eun Young Yoon (chapter 4). We would be seriously remiss if we were to neglect the equally crucial role of innovation in the evolution of cognitive neuroscience. Indeed, in the last decade or so there has been a veritable explosion of innovation. A working knowledge of other techniques and what they can bring to the neu- roscience debate will fuel this innovation. Phillip Shaw and Anthony David (chapter 2) draw together clinical psychiatry, psychology, and neurology in their discussion of cognitive neuropsychiatry. Elisabeth Murray and Mark Baxter (chapter 3) and Robert Wurtz and Marc Sommer (chapter 6) remind us to appreciate the full importance of the study of nonhuman primates and how they can inform the study of human cognition. The continued evolution of cognitive neuroscience is also driven by innovative applications of particular techniques. To ensure that such applications be made transparent, the contributors to this volume were given a second mandate, to report on innovation in their respective specialist fields. As John Henderson (chapter 8) makes clear, the study of eye move- ments can do much to help us understand how visual attention drives what enters our complex cognitive system. Venkata Mattay, Andreas Meyer- Lindenberg, and Daniel Weinberger (chapter 11) report on the successful convergence of neuroimaging and genetic analysis, and discuss the creative potential of this fairly novel technique. Stephen Hall and Peyman Adjamian (chapter 13) examine the chemical underpinnings of cognitive processes. Many of these new neuroscience approaches clearly require, and have only been made possible in latter years by, a dramatic increase in comput- ix Preface ing power. With this in mind, Jack Van Horn and colleagues (chapter 7) describe how distributed or Grid computing allows us to analyze massive data sets in cyberspace. Clearly, the future of cognitive neuroscience looks exciting. We hope this book lets you see the potential of convergent technologies and share in this excitement. We are grateful to Barbara Murphy and Kate Blakinger of MIT Press for their tireless efforts (and for putting up with an endless barrage of emails). Methods in Mind 1 Transcranial Magnetic Stimulation in Human Cognition Lauren Stewart and Vincent Walsh Why Have So Many Different Techniques? The many different ways one can now investigate human brain function allow one to take snapshots of structure and function from different per- spectives. The particular snapshot one sees is determined by the temporal and spatial resolution of the technique being used and by whether one is recording activity from the brain or trying to interfere with or stimulate the brain to change stimulus processing or behavioral responses. The relative spatial and temporal resolutions of various neuroimaging and recording techniques at one’s disposal are vast. But the claimed resolution of a tech- nique is only a partial guide to its utility. One might consider that the higher the spatial resolution, the more precise and therefore fundamental is a measure. One might also think that sampling brain activity at millisecond resolution is self-evidently better than doing so in longer time windows. A consequence of thinking in this way is that one expects the results obtained using different techniques to converge on explanations of sensory and cog- nitive function, and that there is, in some sense, a hierarchy of explanation dependent
Recommended publications
  • The Creation of Neuroscience
    The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits.
    [Show full text]
  • Can We Talk? How the Cognitive Neuroscience of Attention Emerged from Neurobiology and Psychology, 1980-2005
    Can We Talk? How the Cognitive Neuroscience of Attention Emerged from Neurobiology and Psychology, 1980-2005 Abstract This study uses author co-citation analysis to trace prospectively the development of the cognitive neuroscience of attention between 1985 and 2005 from its precursor disciplines: cognitive psychology, single cell neurophysiology, neuropsychology, and evoked potential research. The author set consists of 28 authors highly active in attentional research in the mid-1980s. PFNETS are used to present the co-citation networks. Authors are clustered via the single-link clustering intrinsic to the PFNET algorithm. By the 1990 a distinct cognitive neuroscience specialty cluster emerges, dominated by authors engaged in brain imaging research. Introduction In 1986, Joseph LeDoux and William Hirst (1986) co-edited Mind and Brain: Dialogues in cognitive neuroscience. In the preface, they state: “Researchers in both the brain and cognitive sciences are attempting to understand the mind. Neuroscientists and cognitive psychologists should be natural allies, but tend to work in isolation of one another. Mind and Brain represents a pioneering attempt to bring these two fields closer together. The editors’ objective was to force scientists who are working on the same problem but from different perspectives to address each other.” (p. i) Since the publication of LeDoux and Hirst’s book, a new mind-brain science, cognitive neuroscience, had emerged from this initially forced dialogue. Cognitive neuroscience is now a vigorous, expanding, institutionalized discipline, with its own departments, centers, chairs, journals, and societies. The present study examines how cognitive neuroscience developed from those initial, forced exchanges. It will concentrate on one research area within cognitive neuroscience, research on attentional systems.
    [Show full text]
  • Inside Psychology Page 6
    Inside Spring 2018 Volume 14 Psychology Psychological & Brain Sciences University of California, Santa Barbara INSIDE THIS ISSUE A Story of Discovery The Department of Psychological and Brain Sciences • New Faculty Profile: Tommy Sprague (p.4) (PBS) is home to world-renowned faculty, 55 Ph.D. students, and 2500 undergraduate majors. Together we • UCSB ‘Dream’ School are pursuing cutting-edge science that expands our (p.17) understanding of the mind, brain, and behavior. • Student Awards (p.19) We are committed to ensuring that the pursuit of higher • Alumni Spotlight (p.21) education is available to the best and brightest students • Class Notes (p.27) in California and beyond. On April 12th the Department joined the larger campus community to celebrate UCSB Give Day 2018, a digital fundraising event that united Gauchos near and far to honor everything UCSB is known “We are committed to ensuring that the pursuit of for: academic excellence, campus beauty, and inventive higher education is optimism. Together, we celebrated our university, our available to all of the best accomplishments, and our diversity. Give Day 2018 was and brightest students in an opportunity for alumni, faculty, staff, parents, and California and beyond.” friends to make a collective impact, and Psychological and Brain Sciences had a record-breaking day of engagement. No act of generosity was too small. Gauchos came together for a Give Day that will expand the possibilities for future PBS Gauchos. Inside Page 2 Psychology Thank you to the Alumni, Faculty, Staff, Parents, and Friends who gave back on UCSB Give Day 2018. We had a record-breaking day and your generosity will serve future generations of PBS Gauchos.
    [Show full text]
  • Caltech News 28(3), 11 Ered, Ro Regenerate Cormecrions to Their Roger Sperry with His Work." Sperry Was Also an Avid Original Targets
    specificity of neural reconnection—that 1981 interview. "He soilpted phe• is, by the ability of neurons, when sev• nomenally. The Sperrys' home is filled Caltech News 28(3), 11 ered, ro regenerate cormecrions to their Roger Sperry with his work." Sperry was also an avid original targets. This work led in the paleontologist, with an extensive col• early 19(50s to a new theory explaining lection of prehistoric moUusks. 1913-1994 how neurons grow, assemble, and orga• "He was one of the premier experi• nize themselves in the brain by means mental neurobiologists of his time," Roger W. Spetiy, 1981 Nobel laure• of amazingly intricate, genetically said Norman Davidson, the Norman ate in physiology or medicine and the determined chemical codes. Chandler Professor of Chemical Biol• Institute's Board of Trustees Professor Sperry is best known for his "left- ogy, Emeritus, and executive oflScer for of Psychobiology, Emeritus, <;lied on brain/right-btain" research, work that biology at Caltech. "Those of us who April 17,1994, of a heart attack and of has had an incalculable impact on fields have kpown him since those early years complications associated with a neuro• ranging fimm neurophysiology to psy• will always remember the courage and muscular degenerative disease from chology to education. Working in the tenacity with which he continued to which he had suffered for many years. 1950s and early 1960s with patients carry on his work in later years in spite He was 80. who had had their corpus callosum— of a debilitating degenerative disease. A native of Hartford, Connecticut, the bundle of fibers connecting the left It was an inspiration ro all who knew Sperry earned his bachelor's degree in and right cerebral hemispheres—surgi• him." English literature from Oberlin College cally cut in an effort to control epilep• The late Caltech professor is sur• in 1935, then focused his attention on tic seizures, he demonstrated how the vived by his wife of 45 years.
    [Show full text]
  • Roger W. Sperry
    NATIONAL ACADEMY OF SCIENCES R O G ER WOLCOTT Sp ERRY 1913—1994 A Biographical Memoir by Th E O D O R E J . VONEIDA Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1997 NATIONAL ACADEMIES PRESS WASHINGTON D.C. Photo by Lois MacBird; courtesy of the California Institute of Technology ROGER WOLCOTT SPERRY August 20, 1913–April 17, 1994 BY THEODORE J. VONEIDA HERE DOES behavior come from? What is the purpose “Wof consciousness?” Questions such as these, which appeared on the first page of Sperry’s class notes in a freshman psychology course at Oberlin College, represent an accurate preview of a career that included major contributions to fundamental issues in neurobiology, psychology, and philosophy. Indeed, his first paper, published in the Journal of General Psychology in 1939, entitled “Action Current Study in Movement Coordination,” begins: “The objective psychologist, hoping to get at the physiological side of behavior, is apt to plunge immediately into neurology trying to correlate brain activity with modes of experience,” and continues, setting the stage for much that was to follow: “The result in many cases only accentu- ates the gap between the total experience as studied by the psychologist and neural activity as analyzed by the neurolo- gist.” Roger Sperry was born in Hartford, Connecticut, and spent his early years on a nearby farm, where he developed a lifelong interest in nature. After the death of his father, the family moved to West Hartford, where he attended high school and established an all-state record in the javelin throw.
    [Show full text]
  • Dynamic Network Structure of Interhemispheric Coordination
    Dynamic network structure of INAUGURAL ARTICLE interhemispheric coordination Karl W. Dorona, Danielle S. Bassettb,c, and Michael S. Gazzanigaa,c,1 Departments of aPsychological and Brain Sciences and bPhysics, and cSage Center for the Study of the Mind, University of California, Santa Barbara, CA 93106 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2011. Contributed by Michael S. Gazzaniga, September 21, 2012 (sent for review August 5, 2012) Fifty years ago Gazzaniga and coworkers published a seminal arti- in animals were used to characterize the spatial and temporal cle that discussed the separate roles of the cerebral hemispheres in properties of interhemispheric cross-talk between homologous humans. Today, the study of interhemispheric communication is regions of visual cortex. Subsequent studies further demonstrated facilitated by a battery of novel data analysis techniques drawn that functional coherence, as measured by oscillatory synchroni- from across disciplinary boundaries, including dynamic systems the- zation, is mediated by corticocortical connections passing through ory and network theory. These techniques enable the characteriza- the corpus callosum. This interhemispheric communication tion of dynamic changes in the brain’s functional connectivity, facilitates the binding of features within and between the visual fi thereby providing an unprecedented means of decoding interhemi- hemi elds (12). spheric communication. Here, we illustrate the use of these techni- Complementing examination of the functional role of the cor- ques to examine interhemispheric coordination in healthy human pus callosum, anatomical studies demonstrated that the callosum participants performing a split visual field experiment in which can be divided along its anteroposterior axis into regions with distinct projection topographies (13).
    [Show full text]
  • The Cognitive Revolution in 1981 Dr
    APPENDIX ONE The Cognitive Revolution In 1981 Dr. Roger Sperry of Caltech won a Nobel Prize for his pioneering work on understanding the organization of the brain. Since it was Sperry's work that led to the insights we have been exploring in this book, a review of his fascinating split-brain experiments is in order. The brains of all mammals are divided into two dis­ tinctly separate halves, or hemispheres, which are con­ nected only by a narrow band of nerves called the corpus callosum. Each half of the brain is directly connected only to the nerves and muscles on the opposite side of the body. The optic nerve connections to the retina of the eye are likewise crossed so that the right half of the brain sees only the left side of the visual field 1 and vice versa. This sepa­ ration of control has a survival value because during a battle you have two independent channels at work: Threats from the right can be dealt with by the left brain while at the same time the right brain handles threats from the left. 257 258 APPENDIX ONE THE SPLIT-BRAIN EXPERIMENTS Back in the 1950s, Dr. Sperry began doing animal experiments to discover how the two halves of the brain interact. These experiments ultimately led to his being awarded the Nobel prize. He found that when the two hemispheres of a cat's or monkey's brain were surgically separated, the animals remained remarkably normal. Sperry created an apparatus for separately communicating with each half of the animal's brain by briefly flashing images to their left or right visual field.
    [Show full text]
  • How Can We Construct a Science of Consciousness?
    How Can We Construct a Science of Consciousness? David J. Chalmers Philosophy Program Research School of Social Sciences Australian National University Abstract In recent years there has been an explosion of scientific work on consciousness in cognitive neuroscience, psychology, and other fields. It has become possible to think that we are moving toward a genuine scientific understanding of conscious experience. But what is the science of consciousness all about, and what form should such a science take? This chapter gives an overview of the agenda. 1 First-person Data and Third-person Data The task of a science of consciousness, as I see it, is to systematically integrate two key classes of data into a scientific framework: third-person data, or data about behavior and brain processes, and first-person data, or data about subjective experience. When a conscious system is observed from the third-person point of view, a range of specific behavioral and neural phenomena present themselves. When a conscious system is observed from the first- person point of view, a range of specific subjective phenomena present themselves. Both sorts of phenomena have the status of data for a science of consciousness. Third-person data concern the behavior and the brain processes of conscious systems. These behavioral and neurophysiological data provide the traditional material of interest for cognitive psychology and of cognitive neuroscience. Where the science of consciousness is concerned, some particularly relevant third-person data are those having to do with the following: • Perceptual discrimination of external stimuli • The integration of information across sensory modalities • Automatic and voluntary actions Published in (M.
    [Show full text]
  • Halving It All Douwe Draaisma Enjoys the Autobiography of Michael Gazzaniga, Who Has Studied Split Brains for Half a Century
    COMMENT BOOKS & ARTS RICK FRIEDMAN/CORBIS Michael Gazzaniga pioneered research into how the brain’s hemispheres can operate independently. NEUROSCIENCE Halving it all Douwe Draaisma enjoys the autobiography of Michael Gazzaniga, who has studied split brains for half a century. rom the 1940s onwards, scores of Bogen extended this are operating separately requires shrewd people with intractable epilepsy were to people who had experimental procedures, which Gazzaniga treated by surgically severing their had the operation. pioneered in the early 1960s. These revealed Fcorpus callosum, the nerve bundle that con- Over the decades, as the second conundrum, that the left brain nects the left and right sides of the brain. In Gazzaniga relates, the can see and feel things that the right brain these ‘split-brain’ patients, each hemisphere programme branched does not, and vice versa, yet the patient expe- operates independently. Michael Gazzaniga out to explore percep- riences a single, unitary mind. Even down- — known as the father of cognitive neu- tion, language, facial right discrepancies — the right brain seeing roscience — spent more than 50 years recognition, reason- a picture of a naked person, leaving the left investigating these “splits”, as he calls them ing and many other Tales from Both brain wondering about the blush — are affectionately in his compelling autobiogra- cognitive processes. It Sides of the explained away by the mind using cleverly Brain: A Life in phy, Tales From Both Sides of the Brain. produced a wealth of Neuroscience improvised stories. As a psychology student at Dartmouth information on hemi- MICHAEL S. These stories point to yet a third conun- College in Hanover, New Hampshire, spheric specialization.
    [Show full text]
  • Motivation Reading List 2017
    Motivational Disorders Reading List 2017 | Sanjay Manohar Reviews Suggested core reading Husain & Schott “Cognitive Neurology” Chapter 19, Neuropsychiatric aspects of cognitive impairment Voon V, Mehta AR, and Hallett MD, “Impulse control disorders in Parkinson’s disease: recent advances”, Current Opinion in Neurology (2011) Starkstein SE and Leenthens AFG, “The nosological position of apathy in clinical practice” Other reviews Kranick SM and Hallett MD, “Neurology of Volition”, Exp Brain Res 2013 Sep; 229(3):313-327 Rothkirch, Marcus, and Philipp Sterzer. “The role of motivation in visual processing.” Motivation and Cognitive Control, 2015, 23. Brown, Richard G., and Graham Pluck. “Negative Symptoms: The ‘Pathology’ of Motivation and Goal- Directed Behaviour.” Trends in Neurosciences 23, no. 9 (September 1, 2000): 412–17. Original papers Impulse Control Disorders Sinha, N, Manohar S, and Husain M. “Impulsivity and Apathy in Parkinson’s Disease.” Journal of Neuropsychology, 2013, n/a–n/a. https://doi.org/10.1111/jnp.12013. Review of how the two might relate Clark, L., A. Bechara, H. Damasio, M. R. F. Aitken, B. J. Sahakian, and T. W. Robbins. “Differential Effects of Insular and Ventromedial Prefrontal Cortex Lesions on Risky Decision-Making.” Brain 131, no. 5 (May 1, 2008): 1311–22. https://doi.org/10.1093/brain/awn066. Cambridge Gambling task in prefrontal patients Bechara, Antoine, Daniel Tranel, and Hanna Damasio. “Characterization of the Decision- Making Deficit of Patients with Ventromedial Prefrontal Cortex Lesions.” Brain 123, no. 11 (November 1, 2000): 2189–2202. https://doi.org/10.1093/brain/123.11.2189. The Iowa Gambling Task Obeso, Ignacio, Leonora Wilkinson, Enrique Casabona, Maria Luisa Bringas, Mario Álvarez, Lázaro Álvarez, Nancy Pavón, et al.
    [Show full text]
  • Self-Consciousness and “Split” Brains the Minds’ I
    OUP UNCORRECTED PROOF – REVISES, 04/09/2018, SPi Self-Consciousness and “Split” Brains The Minds’ I Elizabeth Schechter 1 Dictionary: NOSD 0003423032.INDD 3 4/9/2018 5:29:17 PM OUP UNCORRECTED PROOF – REVISES, 04/09/2018, SPi 3 Great Clarendon Street, Oxford, OX2 6D P, United Kingdom Oxford University Press is a department of the University of Oxford. It furthers the University’s objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries © Elizabeth Schechter 2018 The moral rights of the author have been asserted First Edition published in 2018 Impression: 1 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above You must not circulate this work in any other form and you must impose this same condition on any acquirer Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America British Library Cataloguing in Publication Data Data available Library of Congress Control Number: 2017961518 ISBN 978–0–19–880965–4 Printed and bound by CPI Group (UK) Ltd, Croydon, CR0 4YY Links to third party websites are provided by Oxford in good faith and for information only.
    [Show full text]
  • Interview with Michael Gazzaniga
    Ann. N.Y. Acad. Sci. ISSN 0077-8923 ANNALS OF THE NEW YORK ACADEMY OF SCIENCES Issue: The Year in Cognitive Neuroscience Interview with Michael Gazzaniga Widely considered the father of the field of cognitive neuroscience, Professor Michael S. Gazzaniga is one of the world’s premier neuroscientists. He founded the Center for Neuroscience at the University of California, Davis; the Center for Cognitive Neuroscience at Dartmouth College; the Cog- nitive Neuroscience Institute; Journal of Cognitive Neuroscience; and the Cognitive Neuroscience Society. He is currently the director of the Sage Center for the Study of the Mind at the University of Califor- nia, Santa Barbara. Born on December 12, 1939 in Los Angeles and educated at Dartmouth College, he received his Ph.D. in psychobiology at the California Institute of Technology under the tutelage of Roger Sperry. As a graduate student, Professor Gazzaniga initiated the first lateralized testing of human split-brain patients, leading to a fundamental shift in our understanding of functional lateralization in the brain and how the cerebral hemispheres communicate with one another. His many scholarly pub- lications and pioneering work during the last 50 years have produced significant contributions to our understanding of how the brain enables the mind. His landmark 1995 book for MIT Press, The Cognitive Neurosciences, now in its fourth edition, is recognized as the sourcebook for the field. He has also pub- lished many books accessible to a lay audience, including Mind Matters, Nature’s Mind,andThe Ethical Brain. TYCN: You performed the first successful experiments with split-brain patients over 45 years ago and you have published extensively on this topic ever since, providing key insights into the functioning of the hemispheres and the nature of the communication between them.
    [Show full text]