Herring EXPECTATIONS for a NEW MILLENNIUM
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fractal Distribution of an Oceanic Copepod Neocalanus Cristatus in the Subarctic Pacific
Journal of Oceanography Vol. 51, pp. 261 to 266. 1995 Fractal Distribution of an Oceanic Copepod Neocalanus cristatus in the Subarctic Pacific ATSUSHI TSUDA Ocean Research Institute, University of Tokyo 1-15-1, Minamidai, Nakano, Tokyo 164, Japan (Received 13 April 1994; in revised form 28 June 1994; accepted 30 August 1994) Horizontal distribution of the copepod Neocalanus cristatus was shown to be fractal on the scale between tens of meters and over 100 km. The fractal dimensions ranged between 1.68–1.89, significantly higher than those of oceanic turbulence and phytoplankton distribution. 1. Introduction Heterogeneity in the horizontal distribution of zooplankton has been recognized for many years (e.g. Hardy, 1936). The phenomenon, however, has seldom been described precisely, although zooplankton patchiness is relevant to many aspects of biological oceanography. Recent studies reveal that copepod patches do not exhibit characteristic lengths (Mackas and Boyd, 1979; Tsuda et al., 1993) and that the patterns of copepod distribution are self-similar and independent of the scale of observation (Tsuda et al., 1993). These findings suggest that copepod distributions may be fractal. Mandelbrot (1967) introduced the concept of fractals for temporally or spatially irregular phenomena which show self-similarities over a wide range of scales. Many fractal objects have been found in nature (Mandelbrot, 1982), and the theory has been applied to some ecological studies (Morse et al., 1985; Pennycuick and Kline, 1986; Dicke and Burrough, 1988; Sugihara and May, 1990; McKinney and Frederick, 1992). In the oceans, environmental turbulence itself has fractal facets in many aspects (Mandelbrot, 1982; Sreenivasan and Meneveau, 1986). -
A List of Common and Scientific Names of Fishes from the United States And
t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature. -
Foraging Radii and Energetics of Least Auklets (Aethia Pusilla) Breeding on Three Bering Sea Islands
647 Foraging Radii and Energetics of Least Auklets (Aethia pusilla) Breeding on Three Bering Sea Islands Bryan S. Obst1·* Robert W. Russell2·t 2 George L. Hunt, Jr. ·; Zoe A. Eppler·§ Nancy M. Harrison2·ll 1Departmem of Biology, University of California, Los Angeles, California 90024; 2Depanment of Ecology and Evolutionary Biology, University of California, Irvine, California 92717 Accepted 11/18/94 Abstract We studied the relationship between the foraging radius and energy economy of least auklets (Aethia pusilla) breeding in colonies on three islands in the Bering Sea (St. Lawrence, St. Matthew, and St. George Islands). The distan:ce to which auklets commuted on foraging trips varied by more than an order of magnitude (5-56 km), but mean field metabolic rate (FMR) did not vary significantly among birds from the three islands. These observations indicate that allocation to various compartments of time and energy budgets is flexible and suggest that least auklets may have a preferred level ofdaily energy expenditure that is simi lar across colonies. We modeled the partitioning of energy to various activities and hypothesize that the added cost of commuting incurred by auktets from St. Lawrence Island (foraging radius, 56 km) was offiet by reduced energy costs while foraging at sea. Data on bird diets and prey abundances indicated that aukletsfrom St. Lawrence Island fed on larger, more energy-rich copepods than did aukletsfrom St. Matthew island (foraging radius, 5 km) but that depth-aver aged prey density did not differ significantly between the birds' principal forag ing areas. However, previous studies have indicated that zooplankton abun dance is vertically compressed into near-surface layers in stratified waters off St. -
Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch. -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
Volume 2, Chapter 10-1: Arthropods: Crustacea
Glime, J. M. 2017. Arthropods: Crustacea – Copepoda and Cladocera. Chapt. 10-1. In: Glime, J. M. Bryophyte Ecology. Volume 2. 10-1-1 Bryological Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 10-1 ARTHROPODS: CRUSTACEA – COPEPODA AND CLADOCERA TABLE OF CONTENTS SUBPHYLUM CRUSTACEA ......................................................................................................................... 10-1-2 Reproduction .............................................................................................................................................. 10-1-3 Dispersal .................................................................................................................................................... 10-1-3 Habitat Fragmentation ................................................................................................................................ 10-1-3 Habitat Importance ..................................................................................................................................... 10-1-3 Terrestrial ............................................................................................................................................ 10-1-3 Peatlands ............................................................................................................................................. 10-1-4 Springs ............................................................................................................................................... -
Guide to the Identification of Larval and Earlyjuvenile Poachers Fronn
NOAA Technical Report NMFS 137 May 1998 Guide to the Identification of Larval and EarlyJuvenile Poachers (Sco~aendfornnes:~onddae) fronn the Northeastern Pacific Ocean and Bering Sea Morgan S. Busby u.s. Department ofCommerce U.S. DEPARTMENT OF COMMERCE WILLIAM M. DALEY NOAA SECRETARY National Oceanic and Atmospheric Administration Technical D.James Baker Under Secretary for Oceans and Atmosphere Reports NMFS National Marine Fisheries Service Technical Reports of the Fishery Bulletin Rolland A. Schmitten Assistant Administrator for Fisheries Scientific Editor Dr.John B. Pearce Northeast Fisheries Science Center National Marine Fisheries Service, NOAA 166 Water Street Woods Hole, Massachusetts 02543-1097 Editorial Conunittee Dr. Andrew E. Dizon National Marine Fisheries Service Dr. Linda L. Jones National Marine Fisheries Service Dr. Richard D. Methot Nauonal Marine Fisheries Service Dr. Theodore W. Pietsch University of Washington Dr. Joseph E. Powers National Marine Fisheries Service Dr. Titn D. Stnith National Marine Fisheries Service Managing Editor Shelley E. Arenas Scientific Publications Office National Marine Fisheries Service, NOAA 7600 Sand Point Way N.E. Seattle, Washington 98115-0070 The NOAA Technical Report NMFS (ISSN 0892-8908) series is published by the Scientific Publications Office, Na tional Marine Fisheries Service, NOAA, 7600 Sand Point Way N.E., Seattle, WA The NOAA Technual Report NMFS series of the Fishery Bulletin carries peer-re 98115-0070. viewed, lengthy original research reports, taxonomic keys, species synopses, flora The Secretary of Commerce has de and fauna studies, and data intensive reports on investigations in fishery science, termined that the publication of this se engineering, and economics. The series was established in 1983 to replace two ries is necessary in the transaction of the subcategories of the Technical Report series: "Special Scientific Report-Fisher public business required by law of tllis ies" and "Circular." Copies of the NOAA Technual Report NMFS are available free Department. -
Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey
NOAA Technical Memorandum NMFS-AFSC-335 doi:10.7289/V5/TM-AFSC-335 Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey D. E. Stevenson, K. L. Weinberg, and R. R. Lauth U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center November 2016 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Stevenson, D. E., K. L. Weinberg, and R. R. Lauth. 2016. Estimating confidence in trawl efficiency and catch quantification for the eastern Bering Sea shelf survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-335, 51 p. doi:10.7289/V5/TM-AFSC-335. Document available: http://www.afsc.noaa.gov/Publications/AFSC-TM/NOAA-TM-AFSC-335.pdf Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-335 doi:10.7289/V5/TM-AFSC-335 Estimating Confidence in Trawl Efficiency and Catch Quantification for the Eastern Bering Sea Shelf Survey D. -
Marine Biodiversity: Responding to the Challenges Posed by Climate Change, Fisheries, and Aquaculture
e Royal Society of Canada Expert Panel Sustaining Canada’s Marine Biodiversity: Responding to the Challenges Posed by Climate Change, Fisheries, and Aquaculture REPORT February 2012 Prof. Isabelle M. Côté Prof. Julian J. Dodson Prof. Ian A. Fleming Prof. Je rey A. Hutchings (Chair) Prof. Simon Jennings Prof. Nathan J. Mantua Prof. Randall M. Peterman Dr. Brian E. Riddell Prof. Andrew J. Weaver, FRSC Prof. David L. VanderZwaag SUSTAINING CANADIAN MARINE BIODIVERSITY An Expert Panel Report on Sustaining Canada's Marine Biodiversity: Responding to the Challenges Posed by Climate Change, Fisheries, and Aquaculture Prepared by: The Royal Society of Canada: The Academies of Arts, Humanities and Sciences of Canada February 2012 282 Somerset Street West, Ottawa ON, K2P 0J6 • Tel: 613-991-6990 • www.rsc-src.ca | 1 Members of the Expert Panel on Sustaining Canadian Marine Biodiversity Isabelle M. Côté, Professor, Department of Biological Sciences, Simon Fraser University Julian J. Dodson, Professeur titulaire, Département de biologie, Université Laval Ian A. Fleming, Professor, Ocean Sciences Centre, Memorial University of Newfoundland Jeffrey A. Hutchings, Killam Professor and Canada Research Chair in Marine Conservation and Biodiversity, Department of Biology, Dalhousie University Panel Chair Simon Jennings, Principal Scientist, Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft, UK, and Honorary Professor of Environmental Sciences at the University of East Anglia, UK Nathan J. Mantua, Associate Research Professor, Aquatic and Fisheries Sciences, University of Washington, USA Randall M. Peterman, Professor and Canada Research Chair in Fisheries Risk Assessment and Management, School of Resource and Environmental Management, Simon Fraser University Brian E. Riddell, PhD, CEO, Pacific Salmon Foundation, Vancouver, British Columbia Andrew J. -
Fishes-Of-The-Salish-Sea-Pp18.Pdf
NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences. -
Neocalanus Copepods As an Integral Component for Ecological Modeling in the PICES Regions
Neocalanus copepods as an integral component for ecological modeling in the PICES regions PICES Annual Meeting Oct. 25, 2008 Dalian T. Kobari (Kagoshima Univ.) M.J. Dagg (LUMCON) T. Ikeda, A. Yamaguchi (Hokkaido Univ.) What’s “Neocalanus” ? Ontogenetically migrating1. What’scopepods “Neocalanus”NC ? 2. Life cycle pattern Regional comparison 3. Structural roles in ecosystems NF BiomassNP Feeding habitsBering Sea Okhotsk Linkage to higher trophic levels 4. SeaFunctional roles in ecosystems Pacific Ocean Feeding impacts on food web Japan Sea Carbon flux 5. Response to climate change • Neocalanus is a genus name of crustacean zooplankters belonging to calanoid copepods. 6.• TheseConclusion species are large in size up to 10 mm. • These copepods are abundant across the entire subarctic Pacific Ocean and its marginal seas. Fig. 1. Geographical distribution of the three Neocalanus copepods in the North Pacific Ocean and its marginal seas (after Kobari in press). Stars show study site where their life histories revealed to date. Life cycle pattern 0 Bloom 50 100 250 N. flemingeri 500 Depth (m) 750 Spawning N. plumchrus 1000 N. cristatus 2000 J F M A M J J A S O N D J Fig. 2. Schematic diagram of life cycles for Neocalanus copepods in the Oyashio region (modified from Kobari 2008). • Neocalanus copepods carry out an extensive ontogenetic migration in their life cycles. • Young specimens develop from early spring to summer. N. cristatus reside at subsurface from January to August. The other species appear at near surface but the seasons are segregated during March to June for N. flemingeri and during April to August for N. -
The Diets and Feeding Habits of Some Deep-Water Benthic Skates (Rajidae) in the Pacific Waters Off the Northern Kuril Islands and Southeastern Kamchatka
The Diets and Feeding Habits of Some Deep-Water Benthic Skates (Rajidae) in the Pacific Waters Off the Northern Kuril Islands and Southeastern Kamchatka Alexei M. Orlov Reprinted from the Alaska Fishery Research Bulletin Vol. 5 No. 1, Summer 1998 Alaska Fishery Research Bulletin 5(1):1–17. 1998. Articles Copyright © 1998 by the Alaska Department of Fish and Game The Diets and Feeding Habits of Some Deep-Water Benthic Skates (Rajidae) in the Pacific Waters Off the Northern Kuril Islands and Southeastern Kamchatka Alexei M. Orlov ABSTRACT: On the basis of shipboard analysis, the diets of 7 species of deep-benthic skates were examined:Aleutian skate Bathyraja aleutica, sandpaper skate B. interrupta, Alaska skate B. parmifera, B. matsubarai, whiteblotched skate B. maculata, whitebrow skate B. minispinosa, and Okhotsk skate B. violacea. The diet of predatory skates (Alaska skate, Aleutian skate, whiteblotched skate, and B. matsubarai) consisted of large crustaceans, cephalopods and fishes. Benthophagic skates (sandpaper skate, Okhotsk skate, and probably whitebrow skate) consumed mainly amphipods and worms. The consumption of worms and crustaceans (especially small crustaceans) in diets of preda tory skates declined with increasing skate size, whereas cephalopod and fish frequency of occurrence increased. For benthophage skates occurrence of amphipods in stomachs declined with increasing skate size and consumption of shrimps and other large crustaceans, as well as squids, increased. INTRODUCTION genus Bathyraja are given in papers of McEachran and Miyake (1990) and Nakaya and Shirai (1992). Feed The skate family Rajidae plays an important role in ing habits of Bathyraja in the North Pacific are practi ecosystems of the North Pacific basin.