ERMA200924 FINAL Decision ERMA200924.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

ERMA200924 FINAL Decision ERMA200924.Pdf DECISION Summary of decision Date 11 November 2011 Application Code ERMA200924 Import into Containment any New Organism under section 40(1) of Application Type the Hazardous Substances and New Organisms (HSNO) Act 1996. Applicant Wellington Zoo Trust Date Application Received 28 September 2011 Consideration Date 8 November 2011 To import selected invertebrate species into containment for the Purpose of the Application purposes of public display and/or conservation through advocacy, education and research New Organisms Approved for Archispirostreptus gigas (giant African millipede) Importation into Containment Eurycnema goliath (Goliath stick insect) Extatosoma tiaratum (spiny leaf insect) Hierodula majuscule (giant green mantid) Liocheles waigiensis (rainforest scorpion) Macropanesthia rhinoceros (giant burrowing cockroach) Megacrania batesii (peppermint stick insect) Phalacrognathus muelleri (rainbow stag beetle) Tectocoris diophthalmus (cotton harlequin bug) Tropidoderus childrenii (children’s stick insect) Urodacus yaschenkoi (inland robust scorpion) Xylotrupes ulysses (rhinoceros beetle) Application ERMA200924 to import into containment 12 species of invertebrates (listed in control 1) for public display and/or conservation through advocacy, education and research is approved with the controls set out in Appendix 1. The applicant withdrew Australian rainforest millipedes belonging to the family Rhinocricidae from the application following formal receipt, therefore these organisms are not considered in this decision. www.epa.govt.nz 2 Decision ERMA200924 1. Legislative criteria for application 1.1 The application was lodged under section 40(1) of the Hazardous Substances and New Organisms Act 1996 (the Act). 1.2 The application was considered by the Environmental Protection Authority (EPA) in accordance with the relevant provisions of the HSNO Act and the HSNO (Methodology) Order 1998 (the Methodology). 2. Application Process Application receipt 2.1 Application ERMA200924 was formally received on 28 September 2011. Public notification 2.2 Under section 53(2) of the HSNO Act, the EPA has discretion as to whether to publicly notify an application to import into containment any new organism. In this case, the application was not publicly notified because no exceptional circumstances warranting public notification were identified, and significant public interest in this application was not anticipated. 2.3 A targeted call for comments on the application was sent to the regional authorities and selected conservation groups. Federated Farmers responded and raised concerns about biosecurity related risk, which will be addressed by the Biosecurity Act 1993 requirements. No other comments were received. Consultation with government departments 2.4 In accordance with section 58(1)(c) of the HSNO Act and clauses 2(2)(e) and 5 of the Methodology, the Department of Conservation (DOC) and the Ministry of Agriculture and Forestry (MAF) Biosecurity New Zealand were notified and provided with an opportunity to comment on the application. 2.5 DOC noted that the main food source for Megacrania batesii is the leaves of Pandanus tectorius, which is not present in New Zealand. 2.6 MAF noted that Extatosoma tiaratum (spiny leaf insect) and Tectocoris diophthalmus (cotton harlequin bug) are listed as a regulated pest on the MAF unwanted organisms register. This means that the approval user will need permission from the MAF Chief Technical Officer under section 53(2) of the Biosecurity Act to import, exhibit or breed those organisms. 3 Decision ERMA200924 3. Consideration of the application 3.1 The EPA considered the application on 8 November 2011. 3.2 The information that the EPA took into consideration included: Application ERMA200924 (on Form 121/01) prepared by the applicant. Comments received from government departments and other groups. A memorandum to assist and support the decision making. 3.3 The consideration followed the process described in the decision path for applications to import new organisms into containment under section 45 of the HSNO Act (EPA Decision Path Protocol, Figure 12). 3.4 In its consideration of the application, the EPA considered the following points as per the requirements in the HSNO Act and the Methodology: the purpose of the application; the adequacy of the containment regime, and whether the controls provide for matters specified in Schedule 3 (Part 2) of the HSNO Act; the ability of the organisms to establish undesirable self-sustaining populations, and the ease with which the organisms could be eradicated if undesirable populations established; and whether the beneficial effects outweigh the adverse effects of having the organisms in containment. 3.5 These considerations are addressed in the following sections of this decision. 3.6 Following concerns about sufficiency of information on the family Rhinocricidae, the applicant withdrew Australian rainforest millipedes following formal receipt, therefore these organisms are not considered in this decision. 4. The purpose of the application and scope of the approval Purpose of the application 4.1 The applicant, Wellington Zoo Trust, applied to import 12 species of invertebrates (listed in Table 1 below) into containment for breeding, public display and education in a zoological garden. 4.2 In accordance with section 45(1)(a)(i) of the HSNO Act, the EPA determined that this application was for two valid purposes as specified in section 39 of the HSNO Act being: section 39(1)(e): the public display of any organism; and section 39(1)(h): such other purposes as the Authority thinks fit, being conservation through advocacy, education and research. 4.3 The EPA considered that the 12 species of invertebrates listed in Table 1 may be imported into containment, and bred, for either one or both of these purposes (Control 1). 4 Decision ERMA200924 4.4 The EPA note that this approval can be used by multiple organisations, and as such impose Control 2, requiring the person in charge of the containment facility must ensure compliance with the controls of this approval, and Control 3 requiring the containment facility to have documentation specifying how the controls will be met. 4.5 In addition, the EPA imposes Control 4 requiring the person in charge of the containment facility to notify the EPA and the Ministry for Agriculture and Forestry in writing that they intend to use this approval. Scope of the organisms approved 4.6 The organisms approved to be imported into containment belong to the kingdom Animalia, and the phylum Arthropoda, and are listed in Table 1. Table 1 Organisms Approved for Importation into Containment Common name Archispirostreptus gigas giant African millipede Eurycnema goliath Goliath stick insect Extatosoma tiaratum spiny leaf insect Hierodula majuscule giant green mantid Liocheles waigiensis rainforest scorpion Macropanesthia rhinoceros giant burrowing cockroach Megacrania batesii peppermint stick insect Phalacrognathus muelleri rainbow stag beetle Tectocoris diophthalmus cotton harlequin bug Tropidoderus childrenii children’s stick insect Urodacus yaschenkoi inland robust scorpion Xylotrupes ulysses rhinoceros beetle 5. Containment of the new organisms 5.1 In carrying out its consideration, the EPA considered the adequacy of containment regime for the 12 species of invertebrates (listed in Table 1) including: the biological characteristics of the new organisms relating to containment, the proposed containment regime, and potential pathways of escape from containment. 5 Decision ERMA200924 Biological characteristics of the new organisms relating to containment 5.2 The 12 species of invertebrates (listed in Table 1) range in size, with some adults growing to 250mm or more in length. All except for the giant burrowing cockroach, inland robust scorpion and rainforest scorpion, reproduce through the production of eggs, with some species able to flick their eggs. 5.3 Some of the invertebrates, such as the rhinoceros beetle, Goliath stick insect (males only), spiny leaf insects (males only) and children’s stick insect, are able to fly. Other species such as the rainforest scorpion, inland robust scorpion and giant burrowing cockroach, are good burrowers. The cotton harlequin bug is able to walk up smooth surfaces, so will be able to climb enclosure walls. 5.4 Phasmids (stick insects) use camouflage as a defence mechanism, they resemble sticks and foliage very closely, to the point of having false buds, thorns and ragged leaf-like flages. Giant green mantids may also be camouflaged as green or brown foliage or twigs. The proposed containment regime 5.5 The EPA considered the new organisms are to be imported into containment, and must therefore be held within a defined containment facility (Controls 6 and 7). The EPA considered that within a containment facility there will be one or more containment areas (specified places and/or conditions) that will be suitable for containing the organisms. Containment areas may include public viewing areas, and conditions under which the invertebrates may be used for interactions with visitors to the facility. The EPA impose Controls 8-10 relating to containment areas. The EPA requires all reasonably practicable measures be taken to ensure that people entering and exiting containment areas do not compromise containment of the new organisms (Control 11). 5.6 The EPA noted that new organisms may be moved between containment areas within a containment facility, or be transferred between containment facilities (with
Recommended publications
  • Ancient Roaches Further Exemplify 'No Land Return' in Aquatic Insects
    Gondwana Research 68 (2019) 22–33 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Ancient roaches further exemplify ‘no land return’ in aquatic insects Peter Vršanský a,b,c,d,1, Hemen Sendi e,⁎,1, Danil Aristov d,f,1, Günter Bechly g,PatrickMüllerh, Sieghard Ellenberger i, Dany Azar j,k, Kyoichiro Ueda l, Peter Barna c,ThierryGarciam a Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia b Slovak Academy of Sciences, Institute of Physics, Research Center for Quantum Information, Dúbravská cesta 9, Bratislava 84511, Slovakia c Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. BOX 106, 840 05 Bratislava, Slovakia d Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117868 Moscow, Russia e Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia f Cherepovets State University, Cherepovets 162600, Russia g Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany h Friedhofstraße 9, 66894 Käshofen, Germany i Bodelschwinghstraße 13, 34119 Kassel, Germany j State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China k Lebanese University, Faculty of Science II, Fanar, Natural Sciences Department, PO Box 26110217, Fanar - Matn, Lebanon l Kitakyushu Museum, Japan m River Bigal Conservation Project, Avenida Rafael Andrade y clotario Vargas, 220450 Loreto, Orellana, Ecuador article info abstract Article history: Among insects, 236 families in 18 of 44 orders independently invaded water. We report living amphibiotic cock- Received 13 July 2018 roaches from tropical streams of UNESCO BR Sumaco, Ecuador.
    [Show full text]
  • Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Stick Insects Fact Sheet
    Stick Insects Fact Sheet Female Titan Stick Insect. Image: QM, Jeff Wright. Introduction Biology Stick and leaf insects, scientifically known as phasmids, Females lay eggs one at a time, often with a flick of their are among the largest of all insects in the world. At 26 cm, abdomens to throw the egg some distance. An individual the Titan Stick Insect (Acrophylla titan) is the longest of female drops eggs at a rate of one to several per day and all Australian insects. Phasmids have perfected the art of she can produce between 100 and 1,300 eggs in her life- camouflage. Some resemble sticks and foliage so closely time. They fall to the ground and lie in the leaf litter. they even feature false buds, thorns and ragged leaf-like flanges. Small wonder they are rarely seen except after storms when they are blown out of threes and shrubs. Phasmids are sometimes confused with a different group of insects, the mantids. Also called Praying Mantids, these are predators with large, spiny front legs, held folded ready to strike and grasp prey. In contrast, Phasmids are herbivores (plant-eaters) with simple front legs that are similar in size and structure to their other legs. A variety of insect eggs. (on left). An ant carrying a stick insect egg (on right). Images: QM, Jeff Wright. All stick insects feed on fresh leaves. Some browse on a wide variety of trees and shrubs but others are fussy, eating only a limited range of host plants that are often closely Stick insect eggs are generally oval, and superficially seed- related to each other.
    [Show full text]
  • Phasmida (Stick and Leaf Insects)
    ● Phasmida (Stick and leaf insects) Class Insecta Order Phasmida Number of families 8 Photo: A leaf insect (Phyllium bioculatum) in Japan. (Photo by ©Ron Austing/Photo Researchers, Inc. Reproduced by permission.) Evolution and systematics Anareolatae. The Timematodea has only one family, the The oldest fossil specimens of Phasmida date to the Tri- Timematidae (1 genus, 21 species). These small stick insects assic period—as long ago as 225 million years. Relatively few are not typical phasmids, having the ability to jump, unlike fossil species have been found, and they include doubtful almost all other species in the order. It is questionable whether records. Occasionally a puzzle to entomologists, the Phasmida they are indeed phasmids, and phylogenetic research is not (whose name derives from a Greek word meaning “appari- conclusive. Studies relating to phylogeny are scarce and lim- tion”) comprise stick and leaf insects, generally accepted as ited in scope. The eggs of each phasmid are distinctive and orthopteroid insects. Other alternatives have been proposed, are important in classification of these insects. however. There are about 3,000 species of phasmids, although in this understudied order this number probably includes about 30% as yet unidentified synonyms (repeated descrip- Physical characteristics tions). Numerous species still await formal description. Stick insects range in length from Timema cristinae at 0.46 in (11.6 mm) to Phobaeticus kirbyi at 12.9 in (328 mm), or 21.5 Extant species usually are divided into eight families, in (546 mm) with legs outstretched. Numerous phasmid “gi- though some researchers cite just two, based on a reluctance ants” easily rank as the world’s longest insects.
    [Show full text]
  • The Control of Turkestan Cockroach Blatta Lateralis (Dictyoptera: Blattidae)
    Türk Tarım ve Doğa Bilimleri Dergisi 7(2): 375-380, 2020 https://doi.org/10.30910/turkjans.725807 TÜRK TURKISH TARIM ve DOĞA BİLİMLERİ JOURNAL of AGRICULTURAL DERGİSİ and NATURAL SCIENCES www.dergipark.gov.tr/turkjans Research Article The Control of Turkestan Cockroach Blatta lateralis (Dictyoptera: Blattidae) by The Entomopathogenic nematode Heterorhabditis bacteriophora HBH (Rhabditida: Heterorhabditidae) Using Hydrophilic Fabric Trap Yavuz Selim ŞAHİN, İsmail Alper SUSURLUK* Bursa Uludağ University, Faculty of Agriculture, Department of Plant Protection, 16059, Nilüfer, Bursa, Turkey *Corresponding author: [email protected] Receieved: 09.09.2019 Revised in Received: 18.02.2020 Accepted: 19.02.2020 Abstract Chemical insecticides used against cockroaches, which are an important urban pest and considered public health, are harmful to human health and cause insects to gain resistance. The entomopathogenic nematode (EPN), Heterorhabditis bacteriophora HBH, were used in place of chemical insecticides within the scope of biological control against the Turkestan cockroaches Blatta lateralis in this study. The hydrophilic fabric traps were set to provide the moist environment needed by the EPNs on aboveground. The fabrics inoculated with the nematodes at 50, 100 and 150 IJs/cm2 were used throughout the 37-day experiment. The first treatment was performed by adding 10 adult cockroaches immediately after the establishment of the traps. In the same way, the second treatment was applied after 15 days and the third treatment after 30 days. The mortality rates of cockroaches after 4 and 7 days of exposure to EPNs were determined for all treatments. Although Turkestan cockroaches were exposed to HBH 30 days after the setting of the traps, infection occurred.
    [Show full text]
  • Guidelines for Importing Exotic and Non-Florida U.S. Arthropods
    Guidelines for importing arthropods and other invertebrates into Florida This list gives guidance for the pet trade, exhibits, field release, and similar uses. The four categories reflect the permit holder’s ability to contain the organisms. Organisms for scientific research inside quarantine laboratories (e.g. exotic pests and disease vectors) are not listed below; they also require permits and are considered case by case. The examples given below are not exhaustive because hundreds of species are traded. These guidelines are advice about what to expect for most permit applications reviewed by FDACS-DPI, but the Permit Conditions may differ as circumstances warrant. No permits are needed for most species that are native to or widely established in Florida if they are collected within Florida or obtained from in-state sources. Permits are required for all regulated organisms brought into Florida from outside of the state. Permits are also required for certain Pests of Limited Distribution as deemed by the DPI and for native endangered or threatened species. Applicants should first inquire whether a USDA-APHIS permit is required; if APHIS does not regulate it, a FDACS 08208 permit is then required. Species that are not identified by scientific names on the application will be automatically prohibited. The permittee must submit voucher specimens if the organisms are imported in quantity. The purpose is to independently verify the identification. Photographs are acceptable if the organisms are easy to identify by photos and if the individuals are few in number (e.g., personal pets not for resale). I. Regular: The permit application usually will be approved without conditions.
    [Show full text]
  • Stick Insects Feed on Common Garden Leaves, Like Eucalyptus (Gum) and Only Require a Quick Mist with Water Daily
    Care Sheet Easily Handled Absolutely harmless, but delicate. Quite at home crawling on their new owners, gently exploring Great First Pets Stick Insects feed on common garden leaves, like Eucalyptus (gum) and only require a quick mist with water daily between 16degC to 28degC. Avoid direct sunlight as this can become too hot, also avoid draughty locations. Do not use Stick Insect insecticide or other chemicals anywhere near your insect. Crowned - Onchestus Rentzi You should clean your enclosure on a regular basis, checking Goliath - Eurycnema goliath for eggs if you wish to keep them. Spiny Leaf - Extatosoma tiaratum (pictured) Feeding/ Diet Strong - Anchiale briareus Stick Insect eat any types of Eucalypt (Gum) leaves and Titan - Acrophylla titan Acadia (Wattle) species. Small braches with fresh clean leaves should be placed in your enclosure in a container of General Information water. Your stick insect can drown so it is best to have a lid Stick Insects hatch from a small egg and grow by undergoing on the container and have small holes for the branches to be put through. Check that your insects are eating; look to see if a series of moults (shedding their outer skeleton) and moults the leaves are being eaten and if there are droppings in your into an adult at about 6 months of age. Stick Insects generally enclosure. If the aren't eating, try a different type of eucalypt. live from eight to eighteen months. This age variation is due Braches should be changed once or twice a week or as soon to many factors, including species type, temperature and sex as they start drying out.
    [Show full text]
  • RESEARCH ARTICLE a New Species of Cockroach, Periplaneta
    Tropical Biomedicine 38(2): 48-52 (2021) https://doi.org/10.47665/tb.38.2.036 RESEARCH ARTICLE A new species of cockroach, Periplaneta gajajimana sp. nov., collected in Gajajima, Kagoshima Prefecture, Japan Komatsu, N.1, Iio, H.2, Ooi, H.K.3* 1Civil International Corporation, 10–14 Kitaueno 1, Taito–ku, Tokyo, 110–0014, Japan 2Foundation for the Protection of Deer in Nara, 160-1 Kasugano-cho, Nara-City, Nara, 630-8212, Japan 3Laboratory of Parasitology, School of Veterinary Medicine, Azabu University, 1-17-710 Fuchinobe, Sagamihara, Kanagawa 252-5201 Japan *Corresponding author: [email protected] ARTICLE HISTORY ABSTRACT Received: 25 January 2021 We described a new species of cockroach, Periplaneta gajajimana sp. nov., which was collected Revised: 2 February 2021 in Gajajima, Kagoshima-gun Toshimamura, Kagoshima Prefecture, Japan, on November 2012. Accepted: 2 February 2021 The new species is characterized by its reddish brown to blackish brown body, smooth Published: 30 April 2021 surface pronotum, well developed compound eyes, dark brown head apex, dark reddish brown front face and small white ocelli connected to the antennal sockets. In male, the tegmen tip reach the abdomen end or are slightly shorter, while in the female, it does not reach the abdominal end and exposes the abdomen beyond the 7th abdominal plate. We confirmed the validity of this new species by breeding the specimens in our laboratory to demonstrate that the features of the progeny were maintained for several generations. For comparison and easy identification of this new species, the key to species identification of the genus Periplaneta that had been reported in Japan to date are also presented.
    [Show full text]
  • Development of Synanthropic Beetle Faunas Over the Last 9000 Years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid
    University of Birmingham Development of synanthropic beetle faunas over the last 9000 years in the British Isles Smith, David; Hill, Geoff; Kenward, Harry; Allison, Enid DOI: 10.1016/j.jas.2020.105075 License: Other (please provide link to licence statement Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Smith, D, Hill, G, Kenward, H & Allison, E 2020, 'Development of synanthropic beetle faunas over the last 9000 years in the British Isles', Journal of Archaeological Science, vol. 115, 105075. https://doi.org/10.1016/j.jas.2020.105075 Link to publication on Research at Birmingham portal Publisher Rights Statement: Contains public sector information licensed under the Open Government Licence v3.0. http://www.nationalarchives.gov.uk/doc/open- government-licence/version/3/ General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Cockroach Control Manual
    COCKROACHCOCKROACH CONTROLCONTROL MANUALMANUAL (Photo by J. Kalisch) Barb Ogg, Extension Educator, Lancaster County Clyde Ogg, Extension Educator, Pesticide Safety Education Program Dennis Ferraro, Extension Educator, Douglas & Sarpy Counties Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska–Lincoln cooperating with the Counties and the United States Department of Agriculture. ® University of Nebraska–Lincoln Extension’s educational programs abide with the nondiscrimination policies of the University of Nebraska–Lincoln and the United States Department of Agriculture. Table of Contents 1 Chapter 1: Introduction 5 Chapter 2: Know Your Enemy 9 Chapter 3: Cockroach Biology 15 Chapter 4: Locate Problem Areas 23 Chapter 5: Primary Control Strategies: Modify Resources 31 Chapter 6: Low-Risk Control Strategies 37 Chapter 7: Insecticide Basics 45 Chapter 8: Insecticides and Your Health 53 Chapter 9: Insecticide Applications 59 Chapter 10: Putting a Management Plan Together i Cockroach Control Manual Preface It has been more than 10 years since the first edition of the Cockroach Control Manual was completed. While the basic steps for effective and safe cockroach control are still the same, there are more types of control products available than there were 10 years ago. This means you have even more choices in your arsenal to help fight roaches. The Cockroach Control Manual is a practical reference for persons who have had little or no training in insect identification, biology or control methods. We know most people want low toxic methods used inside their homes so we are emphasizing low-risk strategies even more than in the original edition.
    [Show full text]
  • Wildlife (General) Regulations 2010
    Wildlife (General) Regulations 2010 I, the Governor in and over the State of Tasmania and its Dependencies in the Commonwealth of Australia, acting with the advice of the Executive Council, make the following regulations under the Nature Conservation Act 2002. 22 November 2010 PETER G. UNDERWOOD Governor By His Excellency's Command, D. J. O'BYRNE Minister for Environment, Parks and Heritage PART 1 - Preliminary 1. Short title These regulations may be cited as the Wildlife (General) Regulations 2010. 2. Commencement These regulations take effect on 1 January 2011. 3. Interpretation (1) In these regulations, unless the contrary intention appears – Act means the Nature Conservation Act 2002; adult male deer means a male deer with branching antlers; antlerless deer means a deer that is – (a) without antlers; and (b) partly protected wildlife; approved means approved by the Secretary; Bass Strait islands means the islands in Bass Strait that are within the jurisdiction of the State; brow tine means the tine closest to a deer's brow; buy includes acquire for any consideration; cage includes any pen, aviary, enclosure or structure in which, or by means of which, wildlife is confined; certified forest practices plan means a certified forest practices plan within the meaning of the Forest Practices Act 1985; device, in relation to a seal deterrent permit, means a device that – (a) is designed to, or has the capability to, deter seals from entering or remaining in a particular area of water; and (b) involves the use of explosives, the discharge
    [Show full text]