SDAA Banquet Order Form

Total Page:16

File Type:pdf, Size:1020Kb

SDAA Banquet Order Form San Diego Astronomy Association Celebrating Over 50 Years of Astronomical Outreach January 2018 http://www.sdaa.org A Non-Profit Educational Association P.O. Box 23215, San Diego, CA 92193-3215 Annual Banquet Date: January 27, 2018 Speaker: David Reitze Topic: LIGO, the Laser Interferometer Next SDAA Business Meeting Gravitational-Wave Observatory January 14th at 7:00pm 7270 Trade Street San Diego, CA 92121 Next Program Meeting January 27, 2018 at 7:00pm Handlery Hotel & Resort 950 Hotel Circle North, San Diego, CA 92108 David Reitze, Professor of physics at the University of Florida, will be our guest speaker. Professor Reitze is currently at Caltech as the Executive Director of LIGO, the Laser Interferometer Gravitational-Wave Observatory. The 2017 CONTENTS Nobel Prize in physics was awarded to three scientists working on the LIGO January 2018, Vol LVI, Issue 1 project. Published Monthly by the San Diego Astronomy Association Einstein predicted that massive accelerating objects such as colliding black holes or Incorporated in California in 1963 neutron stars would cause the very fabric of space-time to ripple, sending waves across Annual Banquet.......1 space. However, he thought they would be so tiny as to be undetectable. December Minutes...........3 2018 TDS Schedule...........5 But in February last year, Professor Reitze announced that LIGO had detected the January Calendar.................6 undetectable, and a new branch of astronomy was born. SDAA Contacts................7 According to Professor Reitze - "It was a technological tour de force and proved Meet the Members.......8 Einstein right, but that's not why it was important," he said. For Sale............................9 Space Place Partners Article.10 "It's important because it opens a whole new window on the universe. We are now Astronomy Cartoons............13 going to be able to look at the universe in gravitational-wave emissions, a completely different kind of information carrier." Most astronomy up to now – from X-rays through visual light to radio waves – has been in the electromagnetic spectrum. Gravitational waves are a new kind of source and its great promise is to unlock some of the deepest secrets of the universe. "One of the holy grails of this field would be to see the gravitational-wave residue of the Big Bang," Professor Reitze said. Newsletter Deadline The deadline to submit articles After Professor Reitze’s presentation, we will hold an auction of astronomy for publication is the related gear donated by our members. We will also raffle off the many great items that have been donated by our corporate sponsors - watch www.sdaa.org for an 15th of each month. up-to-date list. Our Master of Ceremonies will be SDAA’s very own Jerry Hilburn. San Diego Astronomy Association You are cordially invited to The San Diego Astronomy Association’s Annual Banquet Saturday, January 27, 2018, 6:00 – 11:00pm Handlery Hotel & Resort - 950 Hotel Circle North, San Diego, CA 92108 ____________________________________________________________ Speaker: David Reitze, Professor of physics at the University of Florida. Professor Reitze is currently at Caltech as the Executive Director of LIGO, the Laser Interferometer Gravitational-Wave Observatory. Topic: LIGO Cocktail hour is from 6:00 to 7:00 and dinner from 7:00 to 8:00. SDAA Banquet Order Form Use this form or order online at http://sdaa.org/banquet.htm Name______________________________________________________ Address____________________________________________________ City, State, Zip______________________________________________ Telephone__________________________________________________ Email______________________________________________________ Dinner Selections (Enter number of each) Beef____ Fowl ____ Vegetarian ____ Check here if requiring sugar-free dessert____ Number Attending ____ @ $50 each Total Payment included $ _________ Mail to: San Diego Astronomy Association *Make checks payable to SDAA P.O. Box 23215 Orders must be received no later than 01/22/2018 San Diego, CA 92193-3215 NO TICKETS WILL BE SOLD AT THE DOOR 2 San Diego Astronomy Association San Diego Astronomy Association Board of Directors Meeting December 12, 2017- Unapproved and subject to revision 1. Call to Order The meeting was called to order at 7pm with the following board members in attendance: Mike Chasin, President; Kin Searcy, Vice President; Gene Burch, Treasurer; Scott Dixon, Corresponding Secretary; Brian McFarland, Recording Secretary; Pat Boyce, Director; Dave Wood, Director; Jeff Herman, Director. Members in attendance: Jim Traweek, John and Mary Todd, Tom Webb, and Laird Stiegler. 2. Approval of Last Meeting Minutes The November meeting minutes were approved. 3. Priority / Member Business Laird Stiegler’s new design plan was approved by the Board and a motion was passed to allow him to proceed. When complete, the Board will approve the final construction to ensure it is in accordance with the approved plan. 4. Treasurer’s & Membership Report a. The treasurer’s report was approved. b. A $1,000 donation was received by a generous member. c. One of the bank CDs rolled over. d. We still owe the electrician for the balance due for the electrical panel upgrade. 5. Standard Reports a. Site Maintenance 1. Bill Q is planning a trip to TDS for Dec 16th to catch up. b. Observatory Report – we received the new focuser from OPT. Brian will do the retrofit. c. Private Pad Report 1. We have 2 unleased pads and 3 people on the waiting list. a. One of the people on the waiting list is the current holder of Pad 1. The light trespass is so bad that he wants to swap pads. b. We are in the process of reclaiming another pad for non-payment. We should be through the 90-day contact effort in late January. 2. We are having questions about maintenance on recently leased pads again. As per the last time, we are telling them that routine maintenance such as painting, sanding, sealing, replacement of a rotted board on a bench or cabinet, etc. do not require BOD approval. The exception is any electrical work where the BOD needs to be notified. We’ve also told them that replacement of existing improvements with substantially similar ones DOES require BOD approval but will most likely be approved with minimal effort. The exception to this is piers. If they are simply unbolting an existing pier and replacing it with a new one, they don't need approval. Likewise, no approval is needed to simply add appropriate adapters to an existing pier to mount their telescope. 3. It is becoming harder and harder to lease certain pads. Pad 1 suffers badly from light trespass and there are several pads along the south fence that suffer from significant light trespass. Suspect that some of these pads will become unleasable in the future. We may want to consider club funded improvements to mitigate some of the light trespass issues in those areas, a discount to the lease of some pads, or repurposing some of the pads. Other than Pad 1, this isn't a critical issue yet. d. Program Report 1. February meeting: Citizen Scientist. 2. Kin is accumulating raffle money from the program meetings, as well as some Televue eyepieces which will be raffled at the banquet. e. AISIG Report – Off until Feb. f. Newsletter Report – Andrea continues to do stellar work. 3 San Diego Astronomy Association g. Website Report – Banquet information is on the website with a link to the reservation page on Wild Apricot. I will be maintaining A list of door prizes and sponsors will be maintained on the website. h. Outreach Report – For the last 3 months outreach activity, both attendance and support, has been split with about 30% of our activity at the public events, and 70% at school events. This trend is a reversal from the first 6 months of this year. What is not reflected in these numbers is that the member support for school events involves a smaller number of more active members than the public events. I hope to complete a more thorough trend analysis once our 2017 schedule is completed. We did suffer a serious breakdown of communication for a full week from November 17 through November 24, due to our Yahoo Group going “off line”. No explanation or reason has been offered or discovered at this point. During that time frame our outreach staff were not able to effectively communicate “real time” updates regarding our events. We are in the process of developing an email list of outreach participants to mitigate this issue in the future. November activity Totals for Month: Events Completed 10.0 Events Cancelled 2.0 Attendance: 760.0 Mem Support: 45.0 Averages: Mem/Event: 4.5 Attendees/Scope 16.9 Year to Date since January 1 Completed Events since January 1: 121 Attendees since January 1: 15245 i. Merchandise Report – Working on the T-shirt order; we have $500 in the budget for shirts and hats. j. TARO 1. It will be back on its own breaker on Thursday. 2. Installed a new laptop to run things and it works great. k. Cruzen Observatory – The roof is now operating correctly, although we still have to purchase some minor piece parts to complete the building. l. Social Media – Nothing major to report for social media. We are slowly adding members to the Facebook group (we are at 61 people) and our engagement and interactions are steady and consistent. I imagine that they will taper off as we close in on the holidays. m. JSF 1. Will take place the weekend of August 11, 2018. 2. Doug Sollosy spoke with Hillary G and Jim T and volunteered to take over management if Hillary wants to back out. 3. OPT would like to grow the event, but there is limited space at the venue. 4. Wavelength is interested in setting up a beer garden, but that may be complicated since the event is hosted by a private winery.
Recommended publications
  • Abstracts and Speaker Profiles
    Project: Laser Interferometer Gravitational-Wave Observatory (LIGO) Dr. David Reitze, Executive Director, LIGO Laboratory The Gravitational Wave Astronomical Revolution: India's Emerging Role Abstract: • The past four years have witnessed a revolution in astronomy, enabled by the first detections of gravitational waves from colliding black holes and neutron stars through the direct observation of their gravitational wave emissions by the LIGO and Virgo observatories. These discoveries have profound implications for our understanding of the Universe. Gravitational waves provide unique information about nature's most energetic astrophysical events, revealing insights into the nature of gravity, matter, space, and time that are unobtainable by any other means. In this talk, I will briefly discuss how we detect gravitational waves, how gravitational-wave observatories will revolutionize astronomy in the coming years and decades, and how India is poised to play a key role in the future gravitational wave astronomy. About the Speaker: • David Reitze holds joint positions as the Executive Director of the LIGO Laboratory at the California Institute of Technology and as a Professor of Physics at the University of Florida. His research focuses on the development of gravitational-wave detectors. He received a B.A. in Physics with Honors from Northwestern Univ. and a Ph. D. in Physics from the University of Texas of Austin. He is a Fellow of the American Association for the Advancement of Science, the American Physical Society, and the Optical Society. and was jointly awarded the 2017 US National Academy of Sciences Award for Scientific Discovery for his leadership role in LIGO. He is a member of the international LIGO Scientific Collaboration that received numerous awards for the first direct detection of gravitational waves in 2015, including the Special Breakthrough Prize in Fundamental Physics, the Gruber Prize for Cosmology, the Princess Asturias Award for Scientific and Technical Achievement, and the American Astronomical Society Bruno Rossi Prize.
    [Show full text]
  • Acceptance Speech Kip S. Thorne
    Ceremony of the Doctorate Honoris Causa Award to Prof. Kip S. Thorne Universitat Politècnica de Catalunya•BarcelonaTech (UPC). 25th May 2017. Acceptance Speech Kip S. Thorne Thank you, Enrique, for your much too generous description of me and my contributions to science. This honorary doctorate from the Universitat Politècnica de Catalunya is of great significance to me. It honors, especially, my contributions to LIGO’s discovery of gravitational waves. For this reason, I regard myself as sharing it with the large team of scientists and engineers, whose contributions were essential to our discovery. There are only two types of waves that bring us information about the universe: electromagnetic waves and gravitational waves. They travel at the same speed, but aside from this, they could not be more different. Electromagnetic waves—which include light, infrared waves, microwaves, radio waves, ultraviolet waves, X-rays and gamma rays— these are all oscillations of electric and magnetic fields that travel through space and time. Gravitational waves are oscillations in the fabric of space and time. Galileo Galilei opened up electromagnetic astronomy 400 years ago, when he built a small optical telescope, turned it on the sky, and discovered the four largest moons of Jupiter. We LIGO scientists opened up gravitational astronomy in 2015 when our complex detectors discovered gravitational waves from two colliding black holes, a billion light years from Earth. The efforts that produced these two discoveries could not have been more different. Galileo made his discovery alone, though he built on ideas and technology of others. We LIGO scientists made our discovery through a tight collaboration of more than 1000 scientists and engineers.
    [Show full text]
  • The Future of Ground-Based Gravitational-Wave Detectors
    Penn State Theory Seminar, March 2, 2018 The Future of Ground-based Gravitational-wave Detectors David Reitze LIGO Laboratory California Institute of Technology LIGO-G1800292-v1 LIGO Hanford Observatory LIGO-G1800292 Outline ● Why Make Bigger and Better Detectors? ● Improving Advanced LIGO: A+ ● Exploiting the Existing LIGO Facility Limits: Voyager ● Future ‘3G’ Facilities: Cosmic Explorer and Einstein Telescope 2 LIGO-G1800292 Some of the Questions That Gravitational Waves Can Answer ● Outstanding Questions in Fundamental Physics Black Hole Merger and Ringdown » Is General Relativity the correct theory of gravity? » How does matter behave under extreme conditions? » No Hair Theorem: Are black holes truly bald? ● Outstanding Questions in Astrophysics, Astronomy, Cosmology Image credit: W. Benger » Do compact binary mergers cause GRBs? » What is the supernova mechanism in core-collapse of massive Neutron Star Formation stars? » How many low mass black holes are there in the universe? » Do intermediate mass black holes exist? » How bumpy are neutron stars? » Can we observe populations of weak gravitational wave Image credit: NASA sources? » Can binary inspirals be used as “standard sirens” to measure GW Upper limit map the local Hubble parameter? » Are LIGO/Virgo’s binary black holes a component of Dark Matter? » Do Cosmic Strings Exist? Credit: LIGO Scientific Collaboration3 LIGO-G1800292 LIGO-G1800292 Observing Plans for the Coming 5 Years NOW Abbott, et al., “Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced
    [Show full text]
  • LIGO SCIENTIFIC COLLABORATION LIGO Scientific Collaboration
    LIGO SCIENTIFIC COLLABORATION Document Type LIGO-M-1900084 LIGO Scientific Collaboration Program 2019-2020 The LSC Program Committee: Gabriela Gonzalez,´ Stephen Fairhurst, P. Ajith, Patrick Brady, Alessandra Buonanno, Alessandra Corsi, Peter Fritschel, Bala Iyer, Joey Key, Sergey Klimenko, Brian Lantz, Albert Lazzarini, David McClelland, David Reitze, Keith Riles, Sheila Rowan, Alicia Sintes, Josh Smith WWW: http://www.ligo.org/ Processed with LATEX on 2019/05/30 LIGO Scientific Collaboration Program 2019-2020 Contents 1 Overview 3 1.1 The LIGO Scientific Collaboration’s Scientific Mission . .3 1.2 LSC Science Goals: Gravitational Wave Targets . .4 1.3 LSC Science Goals: Gravitational Wave Astronomy . .5 2 LIGO Scientific Operations and Scientific Results 7 2.1 LIGO Observatory Operations . .7 2.2 LSC Detector Commissioning and Detector Improvement activities . .8 2.3 Detector Calibration and Data Timing . .8 2.4 Operating computing systems and services for modeling, analysis, and interpretation . .9 2.5 Detector Characterization . 10 2.6 The operations of data analysis search, simulation and interpretation pipelines . 10 2.7 LSC Fellows Program . 11 2.8 Development of data analysis tools to search and interpret the gravitational wave data . 12 2.9 Dissemination of LIGO data and scientific results . 13 2.10 Outreach to the public and the scientific community . 14 2.11 A+ Upgrade Project . 15 2.12 LIGO-India . 15 2.13 Roles in LSC organization . 15 3 Advancing frontiers of Gravitational-Wave Astrophysics, Astronomy and Fundamental Physics: Improved Gravitational Wave Detectors 17 3.1 Substrates . 17 3.2 Suspensions and seismic isolation . 18 3.3 Optical Coatings . 18 3.4 Cryogenics .
    [Show full text]
  • Making Waves in Spacetime 22 July 2016, by Barbara K
    Making waves in spacetime 22 July 2016, by Barbara K. Kennedy This gravity-driven merger warped space and sent waves speeding outward, making ripples in the fabric of spacetime. Before the first indication by LIGO, these waves had not ever been detected on Earth. "We now have far more confidence that mergers of two black holes are common in the nearby universe," Hanna said. "Now that we are able to detect gravitational waves, they are going to be a phenomenal source of new information about our galaxy and an entirely new channel for discoveries about the universe." Credit: Michelle Bixby Physicists have concluded that the newly detected gravitational-wave event was produced during the final moments of the merger of two black holes Waves on Earth's oceans move in endless rhythm whose masses were notably smaller than the along sandy beaches. Another kind of wave ripples masses of the black holes whose merger produced to our planet from distant black holes in the LIGO's first detection. This new merger united black universe. holes with masses 14 and 8 times the mass of the sun, producing a spinning black hole that is 21 Less than four months after the historic first-ever times the mass of the sun. detection of gravitational waves, scientists on a team that includes Penn State physicists and "It is very significant that these black holes were astronomers detected another gravitational wave much less massive than those in the first washing over the Earth. detection," said Gabriela Gonzalez, professor of physics and astronomy at Louisiana State "I would never have guessed that we would be so University, spokesperson of the international LIGO fortunate to have not only one, but two definitive Scientific Collaboration (LSC), and a former binary black-hole detections within the first few assistant professor of physics at Penn State.
    [Show full text]
  • Program 2020 – 21
    LIGO-M2000130 PROGRAM 2020 – 21 Image credit: LIGO/Sonoma State University/A. Simonnet LIGO SCIENTIFIC COLLABORATION Document Type LIGO-M2000130-v3 LIGO Scientific Collaboration Program 2020–2021 The LSC Program Committee: Stephen Fairhurst, Stefan Ballmer, P. Ajith, Christopher Berry, Sukanta Bose, Patrick Brady, Alessandra Buonanno, Joey Shapiro Key, Sergey Klimenko, Brian Lantz, Albert Lazzarini, David Ottaway, David Reitze, Sheila Rowan, Jax Sanders, Alicia M. Sintes, Josh Smith WWW: http://www.ligo.org/ Processed with LATEX on 2020/07/08 LIGO Scientific Collaboration Program 2020–2021 Contents 1 Overview 3 1.1 The LIGO Scientific Collaboration’s Scientific Mission . .3 1.2 LSC Science Goals: Gravitational Wave Targets . .4 1.3 LSC Science Goals: Gravitational Wave Astronomy . .5 2 LIGO Scientific Operations and Scientific Results 7 2.1 Observatory Operations . .7 2.2 Detector Commissioning and Detector Improvement activities . .8 2.3 LSC Fellows Program . .9 2.4 Detector Calibration and Data Timing . .9 2.5 Operating computing systems and services for modeling, analysis, and interpretation . 10 2.6 Detector Characterization . 11 2.7 The operations of data analysis search, simulation and interpretation pipelines . 12 2.8 Deliver data analysis tools to search and interpret the gravitational wave data . 13 2.9 Dissemination of LIGO data and scientific results . 14 2.10 Outreach to the public and the scientific community . 16 2.11 A+ Upgrade Project . 17 2.12 LIGO-India . 17 2.13 Post-A+ planning . 18 2.14 Roles in LSC organization . 18 3 Advancing frontiers of Gravitational-Wave Astrophysics, Astronomy and Fundamental Physics: Improved Gravitational Wave Detectors 19 3.1 Substrates .
    [Show full text]
  • Future Ground-Based Gravitational-Wave Observatories: Synergies with Other Scientific Communities
    Future Ground-Based Gravitational-Wave Observatories: Synergies with Other Scientific Communities GWIC April 2021 COMMUNITY NETWORKING SUBCOMMTTEE Michele Punturo, INFN - Perugia, Italy (Co-chair) David Reitze, Caltech, USA (Co-chair) David Shoemaker, MIT, USA STEERING COMMITTEE Michele Punturo, INFN - Perugia, Italy (Co-chair) David Reitze, Caltech, USA (Co-chair) Peter Couvares, Caltech, USA Stavros Katsanevas, European Gravitational Observatory, Italy Takaaki Kajita, University of Tokyo, Japan Vicky Kalogera, Northwestern University, USA Harald Lueck, Albert Einstein Institute, Germany David McClelland, Australian National University, Australia Sheila Rowan, University of Glasgow, UK Gary Sanders, Caltech, USA B.S. Sathyaprakash, Penn State University, USA and Cardiff University, UK David Shoemaker, MIT, USA (Secretary) Jo van den Brand, Nikhef, Netherlands GRAVITATIONAL WAVE INTERNATIONAL COMMITTEE This document was produced by the GWIC 3G Subcommittee and the GWIC 3G Synergies with Scientific Communities Subcommittee Final release, April 2021 Cover: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet) Contents 1 Introduction ........................................................1 2 Constituencies & Affiliated Communities .......................2 3 Engaging with Constituencies & Communities .................7 4 Summary of Recommendations ................................ 11 1. Introduction Planning for the development of a 3rd generation global gravitational-wave detector array is a multifaceted and complex effort that will necessarily need a high level of community input. Interfacing to extant and new stakeholders in the broader scientific constituencies is absolutely necessary to, first, keep them aware of the activities taking place in the ground-based gravitational-wave community and, second, receive input to inform and evolve the planning. The Community Networking Subcommittee within the GWIC 3G Planning Committee is charged with organizing and facilitating communications between 3rd generation projects and the relevant scientific communities.
    [Show full text]
  • Visiting Associate, California Institute of Technology Maître De Recherche
    November 2014 DAVID HOWARD REITZE Address LIGO Laboratory California Institute of Technology MS 100-36 1200 E. California Avenue Pasadena, CA 91125 Telephone (626) 395-6274 (office); (626) 395-2763 (fax) E-mail [email protected] PROFESSIONAL APPOINTMENTS August 2011-Present Executive Director, LIGO Laboratory California Institute of Technology, Pasadena, CA August 2003-Present Professor of Physics (on long term leave) The University of Florida, Gainesville, FL August 1998-August 2003 Associate Professor of Physics The University of Florida, Gainesville, FL August 1993-July 1998 Assistant Professor of Physics The University of Florida, Gainesville, FL November 1992- August 1993 Physicist, Ultrashort Pulse Laser Group, L Division Lawrence Livermore National Laboratory, Livermore, CA October 1990- October 1992 Postdoctoral Member of Technical Staff Bell Communications Research (Bellcore), Red Bank, NJ AFFILIATE APPOINTMENTS 1996, 2000, 2007-2011 Visiting Associate, California Institute of Technology 2001, 2008 Maître de Recherche, Laboratoire d’Optique Appliquée, Palaiseau, France EDUCATION September 1983 Ph. D. in Physics - December 1990 The University of Texas at Austin, Austin, TX Thesis Advisor: Michael Downer, Professor of Physics Thesis Title: Femtosecond Melting Dynamics in Silicon and Carbon September 1979 B. A. in Physics - June 1983 Northwestern University, Evanston, IL HONORS, AWARDS, SERVICE 2015 Fellow, Optical Society of America (OSA) 2014-present Member, National Research Council Committee on Atomic, Molecular, and Optical
    [Show full text]
  • National Science Foundation LIGO BIOS
    BIOS France Córdova is 14th director of the National Science Foundation. Córdova leads the only government agency charged with advancing all fields of scientific discovery, technological innovation, and STEM education. Córdova has a distinguished resume, including: chair of the Smithsonian Institution’s Board of Regents; president emerita of Purdue University; chancellor of the University of California, Riverside; vice chancellor for research at the University of California, Santa Barbara; NASA’s chief scientist; head of the astronomy and astrophysics department at Penn State; and deputy group leader at Los Alamos National Laboratory. She received her B.A. from Stanford University and her Ph.D. in physics from the California Institute of Technology. Gabriela González is spokesperson for the LIGO Scientific Collaboration. She completed her PhD at Syracuse University in 1995, then worked as a staff scientist in the LIGO group at MIT until 1997, when she joined the faculty at Penn State. In 2001, she joined the faculty at Louisiana State University, where she is a professor of physics and astronomy. The González group’s current research focuses on characterization of the LIGO detector noise, detector calibration, and searching for gravitational waves in the data. In 2007, she was elected a fellow of the American Physical Society for her experimental contributions to the field of gravitational wave detection, her leadership in the analysis of LIGO data for gravitational wave signals, and for her skill in communicating the excitement of physics to students and the public. David Reitze is executive director of the LIGO Laboratory at Caltech. In 1990, he completed his PhD at the University of Texas, Austin, where his research focused on ultrafast laser-matter interactions.
    [Show full text]
  • Stefan W. Ballmer
    Stefan W. Ballmer Curriculum Vitae Department of Physics Phone: +1-315-443-3882 Syracuse University Cell: +1-315-278-1154 Syracuse, NY 13244 Fax: +1-315-443-9103 USA E-mail: [email protected] Citizenship: USA, Switzerland Web: thecollege.syr.edu/people/faculty/ballmer-stefan RECENT AND CURRENT POSITIONS Jun 2016 - Associate Professor of Physics present Syracuse University, Syracuse, NY May 2019 - Visiting Associate Professor of Physics Jun 2019 Institute for Cosmic Ray Research, University of Tokyo, Japan May 2018 - Visiting Associate Professor of Physics Jun 2018 Institute for Cosmic Ray Research, University of Tokyo, Japan May 2017 - Visiting Associate Professor of Physics Jun 2017 University of Tokyo, Japan Jun 2013 - Research leave at the LIGO Hanford Observatory Aug 2014 Commissioning the Advanced LIGO interferometer Aug 2010 - Assistant Professor of Physics May 2016 Syracuse University, Syracuse, NY Dec 2009 - NAOJ Visiting Researcher Aug 2010 National Astronomical Observatory of Japan. Sep 2009 - JSPS Postdoctoral Fellow (Gaikokujin Tokubetsu Kenkyuin) Nov 2009 National Astronomical Observatory of Japan. Jul 2006 - Robert A. Millikan Postdoctoral Fellow Aug 2009 California Institute of Technology, Pasadena, CA EDUCATION Jun 2006 Ph.D. Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA Experimental Astrophysics, Laser Interferometer Gravitational Wave Observatory (LIGO). Apr 2000 Diploma (equivalent to Master of Science), Physics, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland With honor, in Theoretical
    [Show full text]
  • A Brief History of LIGO
    A Brief History of LIGO One hundred years ago, using his recently formulated general relativity theory, Albert Einstein predicted the existence of gravitational waves and described their properties. To Einstein these waves seemed too weak ever to be detected, even for the strongest sources that he could conceive. Over the subsequent decades, our improving knowledge of the universe (black holes, neutron stars, supernovae …) and the march of technology (lasers, computers, solid state electronics, low loss optics….) have changed that. In the 1960s, Joseph Weber at the University of Maryland pioneered the effort to build detectors for gravitational waves, using large cylinders of aluminum that vibrate in response to a passing wave, an approach which broke the ground for the field of gravitational-wave searches. LIGO’s approach, using laser interferometry to monitor the relative motion of freely hanging mirrors, was proposed as a theoretical concept form in 1962 by Michael Gertsenshtein and Vladislav Pustovoit in Moscow Russia, and independently several years later by Weber and by Rainer Weiss in America. In 1967, Weiss investigated a laser interferometer limited at some frequencies by quantum shot noise, and in 1972 he completed the invention of the interferometric gravitational wave detector by identifying all the fundamental noise sources that such a detector must face, and conceiving ways to deal with each of them, and by showing that — at least in principle — these ways could lead to detector sensitivities good enough to detect waves from astrophysical sources. Prototype interferometric gravitational wave detectors (“interferometers”) were built in the late 1960s by Robert Forward and colleagues at Hughes Research Laboratories (with mirrors mounted on a vibration isolated plate rather than free swinging), and in the 1970s (with free swinging mirrors between which light bounced many times) by Weiss at MIT, and then by Hans Billing and colleagues in Garching Germany, and then by Ronald Drever, James Hough and colleagues in Glasgow Scotland.
    [Show full text]
  • Curriculum Vitae – UMD Format
    Peter S. Shawhan Curriculum Vitae – UMD format I. Personal Information Full name: Peter Sven Shawhan UMD UID: 109265683 Address: Physical Sciences Complex (Building 415), room 2120 The University of Maryland College Park, MD 20742-2440 Phone: 301-405-1580 Email: [email protected] Web: http://umdphysics.umd.edu/people/faculty/current/item/472-pshawhan.html Academic Appointments at UMD Professor, July 2017 – present Associate Professor, July 2012 – June 2017 Assistant Professor, May 2006 – June 2012 Administrative Appointments at UMD Associate Chair for Graduate Education, Department of Physics, July 2014 – June 2019 Other Employment Senior Scientist, California Institute of Technology, 2002 – 2006 Millikan Prize Postdoctoral Fellow, California Institute of Technology, 1999 – 2002 Educational Background The University of Chicago, September 1990 – August 1999 . M.S. in Physics, December 1992 . Ph.D. in Physics, December 1999 Dissertation: “Observation of Direct CP Violation in KS,L Decays” Faculty advisor: Prof. Bruce D. Winstein Washington University in St. Louis, August 1986 – May 1990 . A.B. (Physics major, Chemistry and Math minor), summa cum laude, May 1990 Professional Certifications, Licenses, and Memberships Fellow of the American Physical Society Member of the American Astronomical Society Life Member of the International Society on General Relativity and Gravitation Member of the American Association of Physics Teachers 1 II. Research, Scholarly, Creative and/or Professional Activities Notes about authorship conventions: Most of my research has been conducted within large collaborations, and I am a co-author on many papers as a result. The standard practice in these collaborations is to list all active members as authors, strictly alphabetically in most cases, to represent the contributions that all of us have made to the assembly, testing, infrastructure, operation, data analysis and internal review for the experiments and results.
    [Show full text]