The Males of Melipona and Other Stingless Bees, and Their Mothers1

Total Page:16

File Type:pdf, Size:1020Kb

The Males of Melipona and Other Stingless Bees, and Their Mothers1 Apidologie 36 (2005) 169–185 © INRA/DIB-AGIB/ EDP Sciences, 2005 169 DOI: 10.1051/apido:2005014 Review article The males of Melipona and other stingless bees, and their mothers1 Hayo H.W. VELTHUISa*, Dirk KOEDAMb, Vera L. IMPERATRIZ-FONSECAb a Klemit 1, 5325 KG Wellseind, The Netherlands b Laboratório de Abelhas, Depto. de Ecologia, Instituto de Biociências, USP, Rua do Matão, Trav. 14, No. 321, CEP 05508-900, São Paulo, Brazil Received 4 November 2004 – Revised 7 January 2005 – Accepted 17 January 2005 Published online 1 June 2005 Abstract – Female behaviour in social Hymenoptera and the queen-worker conflict with respect to male production have been the focus of many studies. Although male production is an investment that is in conflict with investment in colony size, males play a vital role in colony reproduction. This paper reviews the production patterns of male stingless bees, their activities once they have reached adulthood and their origin (i.e., are they sons of workers or of queens). The existence of a broad spectrum of species-specific patterns of male production, sex ratios, and male parentage offers ample opportunities to discuss the influence of ecology on the dynamics of stingless bee colony life. The paper also argues that selfishness causes the queen and the workers to compete and each to adopt certain strategies in their effort to produce male progeny. It is this competition, expressed in various forms during the characteristic and socially complex process of cell provisioning and oviposition, that could help explain the variable outcomes of male parentage at the species level as we currently know them. stingless bee male / sex ratio / life history / male aggregation / queen-worker conflict / provisioning and oviposition process 1. INTRODUCTION monopolize male production. This characteris- tic differs greatly between Melipona species. Stingless bees form an ancient (Michener This genus, therefore, offers ample opportuni- and Grimaldi, 1988) and rather diversified ties for studies on the factors that have had an (Michener, 1974, 2000) group of mass-provi- impact on the evolutionary rules governing the sioning eusocial bees. They vary considerably dynamics of colony life. This interaction in several of the characters for which sociobio- between our concepts of primary evolutionary logical theory would predict a basic uniformity. rules and the ecology of bees will be reviewed Trivers and Hare (1976) made clear that work- in this paper. ers of hymenopteran colonies, headed by a sin- Colonies of stingless bees are made up of gle monandrous queen, have reproductive males and females, and the latter are divided interests that are different from their mother. into workers and queens. Differences between This discord has its expression in the origin of males and females start with the fertilization of the males, some of which are sons of the queen the egg: the unfertilized egg becomes a male, whereas others are sons of some of the workers. while the fertilized egg is female. Sex determi- The workers of such colonies find their genes nation, therefore, is genetic and is related to better represented in sons and nephews than in haplodiploidy. In contrast, the main decisive brothers and should, accordingly, attempt to factor in the development of a fertilized egg * Corresponding author: [email protected] 1 Manuscript editor: Gudrun Koeniger Article published by EDP Sciences and available at http://www.edpsciences.org/apido or http://dx.doi.org/10.1051/apido:2005014 170 H.H.W. Velthuis et al. into a queen or a worker is the quality/quantity colony characteristics. However, major differ- of food in the brood cell. ences exist in the way in which males are pro- Queens can be reared in different ways. duced. Most genera of the tribe Meliponini construct occasionally a larger brood cell that contains more food than the common brood cells. This 2. THE PATTERNS OF MALE quantitative factor modifies the differentiation PRODUCTION of the female larva in the cell: she will become a queen. The smaller and more common cells In general, male production in a social insect harbour workers and males. Thus, like in the colony is influenced by outside factors related honeybees, queens of these genera emerge to climatic periodicity, and factors inside the from specific queen cells. Different mecha- colony such as colony strength and demo- nisms are seen in the remaining genera. In Frie- graphic composition. Under temperate condi- seomelitta, for example, large queen cocoons tions, climate has a preponderant impact. The occur, but are the result of larvae perforating seasonal factors force colonies to produce their the wall of an adjacent cell. These larvae then sexuals during a brief period, thereby synchro- gain a second portion of food, enabling the nizing the colonies of a population. In contrast, modification of their development into a queen bees in tropical regions may be largely inde- (Terada, 1974; Faustino et al., 2002). All brood pendent of such climatic influences, although cells in the genus Melipona are approximately the alternation of dry and wet seasons may the same size. In this genus it is the minute var- cause males to be more frequent in one period iation in the quantity and, perhaps, also in the of the year than in the other. Synchronous pro- quality of the food that contributes to the devel- duction at the population level, therefore, may opmental differentiation between workers and become less pronounced and the role of within- queens. A two-locus genetic mechanism may colony factors more evident. also prevent 75% of the Melipona females from Male production is an investment that is in becoming queens (Kerr, 1950; Velthuis and conflict with investment in colony size: instead Sommeijer, 1991). Because the differences in of a worker a male emerges that does not par- the food for worker or queen development are ticipate in regular colony activities like cell so small, young Melipona queens emerge quite building, cell provisioning, colony defense, regularly even though hardly any are actually and foraging. He does, however, represent the needed. These superfluous queens are then colony in the reproductive arena. Investments killed by the workers. in reproduction may occur once the existence This peculiar and seemingly overproduction and future of the colony is assured. of queens and their fascinating mechanism for How would male production be regulated at caste differentiation have stimulated many the colony level? For a perennial colony with studies on Melipona (Kerr, 1950; Velthuis a long life expectancy, which characterizes and Sommeijer, 1991; Koedam et al., 1995; Melipona species, there may be two ways: (1) Wenseleers and Ratnieks, 2004; Wenseleers constantly as a proportion of the cells produced, et al., 2004). As a result and because a in a ratio that increases both with colony size number of Melipona species have been domes- and with the rate of cell production or (2) as an ticated, the genus Melipona is better known outburst of limited duration once the proper compared to most of the other stingless bee colony size and conditions have been reached. genera. In the first instance, male production is a con- Males are the prime subject of this study. We stant but light impediment. In the second case, will discuss the patterns of their production, male production may lead to distinct fluctua- their activities once they reach adulthood, and tions in the worker force, which forces the col- their origin (i.e., are they the sons of workers ony to recover after a male producing period. or of queens?). Alhough this paper concen- Long-term ecological factors, such as the prob- trates on the genus Melipona, when appropriate ability of the presence of suitable but unoccu- other genera will be mentioned. Melipona is a pied nesting sites in the habitat, may also be neotropical genus comprising about 40 species, involved. Such habitat characteristics deter- which, to a large extent, are uniform in their mine the incidence of swarming. If swarming Males of stingless bees and their mothers 171 is frequent, we might expect colony growth rate 2.1. Temporal patterns of male to be important and thus male production to be production absent or limited in smaller colonies. One pos- sible example of this is M. mandacaia, a species It has been documented at colony level of a that lives in the caatingas of the state of Bahia, number of species, that most of the males are Brazil. These areas are exposed to extremely produced in periods with a restricted duration. long periods of drought, during which bee col- We have termed this the Male-Producing Peri- ods or MPP (this term is preferred over the onies may undergo considerable size reduction. almost equivalent term Male Emerging Period Populations, therefore, are characterized by or MEP proposed by Chinh et al., 2003). In high colony-mortality rates. Once a rainy recent studies, this phenomenon has been doc- period has caused the vegetation to bloom, the umented to occur in M. asilvai, M. bicolor, M. colonies increase rapidly in size and then favosa, and M. subnitida as well as in Plebeia swarm to occupy the nesting sites that became remota, Scaptotrigona postica, Schwarziana vacant (Castro, pers. com.). We might expect quadripunctata and Trigona (Lepidotrigona) male production in such a species to be concen- ventralis (Bego, 1982; Koedam et al., 1999; trated in time at both the population level and Velthuis et al., 2002; Sommeijer et al., 2003; the colony level, because the impact of the Alves, 2004; Alves et al., 2004; Chinh, 2004; environment is so great that the within-colony Alves, unpubl.). It is, therefore, a wide-spread factors have little influence. In contrast, there event. MPPs may be the result of a synchro- might not be a vacant nest cavity for long peri- nous, albeit differential, production of repro- ods of time for species living in areas where the ductive eggs by a number of workers, some- environment is more stable.
Recommended publications
  • Recruitment Behavior in Stingless Bees, Melipona Scutellaris and M
    Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance Stefan Jarau, Michael Hrncir, Ronaldo Zucchi, Friedrich Barth To cite this version: Stefan Jarau, Michael Hrncir, Ronaldo Zucchi, Friedrich Barth. Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance. Apidologie, Springer Verlag, 2000, 31 (1), pp.81-91. 10.1051/apido:2000108. hal-00891699 HAL Id: hal-00891699 https://hal.archives-ouvertes.fr/hal-00891699 Submitted on 1 Jan 2000 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 31 (2000) 81–91 81 © INRA/DIB/AGIB/EDP Sciences Original article Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance Stefan JARAUa, Michael HRNCIRa, Ronaldo ZUCCHIb, Friedrich G. BARTHa* a Universität Wien, Biozentrum, Institut für Zoologie, Abteilung Physiologie – Neurobiologie, Althanstraβe 14, A-1090 Wien, Austria b Universidade de São Paulo, Faculdade de Filosofia e Letras, Departamento de Biologia 14040-901 Ribeirão Preto, SP, Brazil (Received 28 April 1999; revised 6 September 1999; accepted 22 September 1999) Abstract – The two stingless bee species Melipona scutellaris and M.
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • Comparative Temperature Tolerance in Stingless Bee Species from Tropical
    Comparative temperature tolerance in stingless bee species from tropical highlands and lowlands of Mexico and implications for their conservation (Hymenoptera: Apidae: Meliponini) José Macías-Macías, José Quezada-Euán, Francisca Contreras-Escareño, José Tapia-Gonzalez, Humberto Moo-Valle, Ricardo Ayala To cite this version: José Macías-Macías, José Quezada-Euán, Francisca Contreras-Escareño, José Tapia-Gonzalez, Hum- berto Moo-Valle, et al.. Comparative temperature tolerance in stingless bee species from tropical highlands and lowlands of Mexico and implications for their conservation (Hymenoptera: Apidae: Meliponini). Apidologie, Springer Verlag, 2011, 42 (6), pp.679-689. 10.1007/s13592-011-0074-0. hal-01003611 HAL Id: hal-01003611 https://hal.archives-ouvertes.fr/hal-01003611 Submitted on 1 Jan 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2011) 42:679–689 Original article * INRA, DIB-AGIB and Springer Science+Business Media B.V., 2011 DOI: 10.1007/s13592-011-0074-0 Comparative temperature tolerance in stingless bee species from
    [Show full text]
  • Cameroon: Nest Architecture, Behaviour and Labour Calendar
    Institut für Nutzpflanzenwissenschaften und Ressourcenschutz Rheinische Friedrich-Wilhelms-Universität Bonn Diversity of Stingless Bees in Bamenda Afromontane Forests – Cameroon: Nest architecture, Behaviour and Labour calendar Dissertation zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. Agr.) der Hohen Landwirtschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität zu Bonn vorgelegt am 04. November 2009 von Moses Tita Mogho Njoya aus Lobe Estate, Kamerun Referent: Prof. Dr. D. Wittmann Korreferent: Prof. Dr. A. Skowronek Tag der mündlichen Prüfung: 22. Dezember 2009 Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert Erscheinungsjahr: 2010 Dedication To my parent who are of blessed memory: Chui George Ntobukeu NJOYA and Tohjeuh Elizabeth Bah. ABSTRACT Until now almost nothing was known of invertebrates such as wild bees in the Bamenda highland forest region in Cameroon. This study focuses on honey producing bee species which do not possess functional stings. The diversity of the stingless bees in this area as well as their nest biology and behaviour was studied. In all, Six species of stingless bees grouped into four genera exist in the Bamenda afro-montane forests. The four genera are: Meliponula (3 species), Dactylurina (1species), Hypotrigona (1 species) and Liotrigona (1species). The most represented of the species in Bamenda was Liotrigona. Stingless bees were found to have huge variations in habitat preferences and in nest architectures. Nest designs differ with species as well as the habitats. Nest were found in tree trunks, mud walls, traditional hives, in soils or even just attached to tree branches. Brood cells and storage pots differ from species to species.
    [Show full text]
  • (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro
    Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest Marília Silva, Mauro Ramalho, Daniela Monteiro To cite this version: Marília Silva, Mauro Ramalho, Daniela Monteiro. Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest. Apidologie, Springer Verlag, 2013, 44 (6), pp.699-707. 10.1007/s13592-013-0218-5. hal-01201339 HAL Id: hal-01201339 https://hal.archives-ouvertes.fr/hal-01201339 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:699–707 Original article * INRA, DIB and Springer-Verlag France, 2013 DOI: 10.1007/s13592-013-0218-5 Diversity and habitat use by stingless bees (Apidae) in the Brazilian Atlantic Forest 1,2 1 1 Marília Dantas E. SILVA , Mauro RAMALHO , Daniela MONTEIRO 1Laboratório de Ecologia da Polinização, ECOPOL, Instituto de Biologia, Departamento de Botânica, Universidade Federal da Bahia, Campus Universitário de Ondina, Rua Barão do Jeremoabo s/n, Ondina, CEP 40170-115, Salvador, Bahia, Brazil 2Instituto Federal de Educação, Ciência e Tecnologia Baiano, Campus Governador Mangabeira, Rua Waldemar Mascarenhas, s/n—Portão, CEP 44350000, Governador Mangabeira, Bahia, Brazil Received 28 August 2012 – Revised 16 May 2013 – Accepted 27 May 2013 Abstract – The present study discusses spatial variations in the community structure of stingless bees as well as associated ecological factors by comparing the nest densities in two stages of forest regeneration in a Brazilian Tropical Atlantic rainforest.
    [Show full text]
  • Introduction to Neotropical Entomology and Phytopathology - A
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT – Vol. VI - Introduction to Neotropical Entomology and Phytopathology - A. Bonet and G. Carrión INTRODUCTION TO NEOTROPICAL ENTOMOLOGY AND PHYTOPATHOLOGY A. Bonet Department of Entomology, Instituto de Ecología A.C., Mexico G. Carrión Department of Biodiversity and Systematic, Instituto de Ecología A.C., Mexico Keywords: Biodiversity loss, biological control, evolution, hotspot regions, insect biodiversity, insect pests, multitrophic interactions, parasite-host relationship, pathogens, pollination, rust fungi Contents 1. Introduction 2. History 2.1. Phytopathology 2.1.1. Evolution of the Parasite-Host Relationship 2.1.2. The Evolution of Phytopathogenic Fungi and Their Host Plants 2.1.3. Flor’s Gene-For-Gene Theory 2.1.4. Pathogenetic Mechanisms in Plant Parasitic Fungi and Hyperparasites 2.2. Entomology 2.2.1. Entomology in Asia and the Middle East 2.2.2. Entomology in Ancient Greece and Rome 2.2.3. New World Prehispanic Cultures 3. Insect evolution 4. Biodiversity 4.1. Biodiversity Loss and Insect Conservation 5. Ecosystem services and the use of biodiversity 5.1. Pollination in Tropical Ecosystems 5.2. Biological Control of Fungi and Insects 6. The future of Entomology and phytopathology 7. Entomology and phytopathology section’s content 8. ConclusionUNESCO – EOLSS Acknowledgements Glossary Bibliography Biographical SketchesSAMPLE CHAPTERS Summary Insects are among the most abundant and diverse organisms in terrestrial ecosystems, making up more than half of the earth’s biodiversity. To date, 1.5 million species of organisms have been recorded, although around 85% of potential species (some 10 million) have not yet been identified. In the case of the Neotropics, although insects are clearly a vital element, there are many families of organisms and regions that are yet to be well researched.
    [Show full text]
  • Dwarf Gynes in Nannotrigona Testaceicornis (Apidae, Meliponinae, Trigonini)
    Dwarf gynes in Nannotrigona testaceicornis (Apidae, Meliponinae, Trigonini). Behaviour, exocrine gland morphology and reproductive status Vl Imperatriz-Fonseca, C Cruz-Landim, Rlm Silva de Moraes To cite this version: Vl Imperatriz-Fonseca, C Cruz-Landim, Rlm Silva de Moraes. Dwarf gynes in Nannotrigona testa- ceicornis (Apidae, Meliponinae, Trigonini). Behaviour, exocrine gland morphology and reproductive status. Apidologie, Springer Verlag, 1997, 28 (3-4), pp.113-122. hal-00891410 HAL Id: hal-00891410 https://hal.archives-ouvertes.fr/hal-00891410 Submitted on 1 Jan 1997 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Original article Dwarf gynes in Nannotrigona testaceicornis (Apidae, Meliponinae, Trigonini). Behaviour, exocrine gland morphology and reproductive status VL Imperatriz-Fonseca C Cruz-Landim RLM Silva de Moraes 1 Instituto de Biociências, Universidade de São Paulo, CP 11461, CEP 05508-900, São Paulo; 2 Instituto de Biociências, Universidade Estadual Paulista, CP 199, CEP 13506-900, Rio Claro, São Paulo, Brazil (Received 21 January 1997; accepted 14 April 1997) Summary—The behaviour and morphology of dwarf gynes produced in worker-sized cells of nor- mal colonies in Nannotrigona testaceicornis (Meliponinae, Trigonini) were studied. The behaviour of these dwarf virgin queens was the same as observed for normal Trigonine gynes.
    [Show full text]
  • Diversity and Nesting Substrates of Stingless Bees (Hymenoptera, Meliponina) in a Forest Remnant
    Hindawi Publishing Corporation Psyche Volume 2012, Article ID 370895, 9 pages doi:10.1155/2012/370895 Research Article Diversity and Nesting Substrates of Stingless Bees (Hymenoptera, Meliponina) in a Forest Remnant Estefane Nascimento Leoncini Siqueira, Bruno Ferreira Bartelli, Andre´ Rosalvo Terra Nascimento, and Fernanda Helena Nogueira-Ferreira Instituto de Biologia, Pos-graduac´ ¸ao˜ em Ecologia e Conservac¸ao˜ de Recursos Naturais, Universidade Federal de Uberlandia,ˆ 38400-902 Uberlandia,ˆ MG, Brazil Correspondence should be addressed to Fernanda Helena Nogueira-Ferreira, [email protected] Received 15 August 2012; Accepted 12 September 2012 Academic Editor: Kleber Del-Claro Copyright © 2012 Estefane Nascimento Leoncini Siqueira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Stingless bees are abundant and diverse key actors in several plant-pollinator networks in the neotropics, but little is known about their natural history and ecology. This study aims to contribute to knowledge about the diversity and dispersion of stingless bees and discusses the importance of nesting substrates. It was carried out in the Araguari river valley in Minas Gerais, Brazil, where a nest site survey was conducted in an area of 100 ha during 11 alternate months from 2006 to 2008, for a total of 1,200 observation hours. Sixty-nine nests were found, belonging to 12 genera and 20 different species. Nests of Melipona rufiventris were by far the most abundant. Stingless bees nested more frequently in hollows of live trees (64%), and 11 different substrates were identified.
    [Show full text]
  • Kiatoko N..Pdf
    DISTRIBUTION, BEHAVIOURAL BIOLOGY, REARING AND POLLINATION EFFICIENCY OF FIVE STINGLESS BEE SPECIES (APIDAE: MELIPONINAE) IN KAKAMEGA FOREST, KENYA BY KIATOKO NKOBA Reg No. I84F/11631/08 A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Agricultural Entomology in the School of Pure and Applied Sciences of Kenyatta University AUGUST 2012 i DECLARATION This thesis is my original work and has not been presented for a degree in any other University or any other award. Kiatoko Nkoba Department of Zoological Science Signature:…………………… Date:……………… We confirm that the work reported in this thesis was carried out by the candidate under our supervision. We have read and approved this thesis for examination. Professor J. M. Mueke Department of Zoological Sciences Kenyatta University Signature:…………………… Date:……………… Professor K. Suresh Raina Commercial Insects Programme, icipe African Insect Science for Food and Health Signature:…………………… Date:……………… Dr. Elliud Muli Department of Biological Sciences South Eastern University College (A Constituent College of the University of Nairobi) Signature:…………………… Date:……………… ii DEDICATION This thesis is dedicated to The All Mighty God, My parents Prefessor Kiatoko Mangeye Honore and Madame Kialungila Mundengi Cecile, My lovely daughters Kiatoko Makuzayi Emile and Kiatoko Mangeye Pongelle and to my wife Luntonda Buyakala Nicole. Thank you for your love and support. iii ACKNOWLEDGEMENTS I am grateful to Prof Jones Mueke for having accepted to be my University supervisor and for providing me high quality scientific assistance. The pleasure and a great honour are for me having you as my supervisor. You have always motivated me throughout the study period and will always remember the patience you had in reading my writing expressed in French.
    [Show full text]
  • Happy Healthy Bees
    Healthy Honey from Happy Healthy Bees Meliponia Honey, Available on route to Yaxha, Peten, Guatemala NICHOLAS HELLMUTH Healthy Honey from Happy Healthy Bees MAY 2021 FLAAR (USA) and FLAAR Mesoamerica (Guatemala) CREDITS APPRECIATION The helpful individuals listed below are part of COORDINATION OF THE PROJECT OF the FLAAR Mesoamerica research and field work COOPERATION team. The office research team is additional Licda. Merle Fernandez, CONAP individuals in the main office in Guatemala City. Marla Mercedes Bolvito Jerónimo, Unidad de Cooperación Nacional e Author Internacional de la Secretaría Ejecutiva Nicholas Hellmuth de CONAP Licda. Ana Luisa De León N., Directora de Bibliography Team Educación para el Desarrollo Nicholas Hellmuth Sostenible, CONAP Vivian Hurtado Lic. Apolinario Córdova, CONAP Peten Photographers COOPERATION, HOSPITALITY, AND Nicholas Hellmuth ASSISTANCE AT PARQUE NACIONAL Roxana Leal YAXHA, WE THANK David Arivillaga Ing. Jorge Mario Vazquez (CONAP, Vivian Diaz Santa Elena, Peten) Arq. Jose Leonel Ziesse (IDAEH, Santa Editor Elena, Peten) Vivian Díaz Biolg. Lorena Lobos (CONAP) Manager of Design and Layout ASSISTANCE FOR KNOWLEDGE OF Andrea Sánchez Díaz STINGLESS BEES OF PNYNN Teco, Moisés Daniel Pérez Déaz, park Layout of this English Edition ranger, PNYNN Alexander Gudiel ASSISTANCE FOR KNOWLEDGE OF STINGLESS BEES OF PETEN & IZABAL Scott Forsythe ASSISTANCE FOR KNOWLEDGE OF STINGLESS BEES OF PNYNN Don Goyo, Gregorio Ruiz Méndez PHOTO FROM FRONT COVER PHOTO FROM TITLE PAGE Honey “boxes” from stingless bees at Don Stingless bees Goyo local business. Photo by: David Arrivillaga, FLAAR Photo by: Nicholas Hellmuth, FLAAR Meso- Mesoamerica, Jul. 9, 2019, Naranjo Park. america, May 6, 2021, Road to Parque Nacional Camera: Nikon D5.
    [Show full text]
  • Revista Biologia Tropical
    VOLUMEN 21 1973 SUPLEMENTO 1 UNIVERSIDAD DE COSTA RICA REVISTA BIOLOGIA TROPICAL THE NEST ARCHITECTURE OF STINGlESS BEES WITH SPECIAl REFERENCE TO THOSE OF COSTA RICA (Hymenoptera, Apidae) A. WILLE and c. D. MICHENER THE NEST ARCHITECTURE OF STINGLESS BEES WITH SPECIAL REFERENCE TO THOSE OF COSTA RICA (Hymenoptera, Apidae) 2 by Alvaro Wille 1 and Charles D. Michener CONTENTS Introduetion ...................................................................... .................................. 9 Classifieation and Nomenclature .......................................................................... 17 Nest Loeations ........................................ ...... ............ ............ ...................... ......... 17 A. General Aecount ..... .............. ............ ................ .................. .......... .... 17 B. Sites of Costa Riean Nests Studied ..................................... ............... 38 Nest Struetures ... ................. ........................ ....... ........... ..................................... 38 A. Terminology and Nest Organization .................................................. 38 l. Materials ... ......................................... ...................................... 38 2. Organization and terminology...... ............................................ 38 B. Tabular Summary of Meliponine Nest Strueture ............................... 41 1. Content and methods ............................................................... 41 2. Symbols used in the tables .... ...... ............................................
    [Show full text]
  • Behavioral Suites Mediate Group-Level Foraging Dynamics in Communities of Tropical Stingless Bees
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Insect. Soc. (2010) 57:105–113 DOI 10.1007/s00040-009-0055-8 Insectes Sociaux RESEARCH ARTICLE Behavioral suites mediate group-level foraging dynamics in communities of tropical stingless bees E. M. Lichtenberg • V. L. Imperatriz-Fonseca • J. C. Nieh Received: 6 June 2009 / Revised: 23 October 2009 / Accepted: 24 November 2009 / Published online: 18 December 2009 Ó The Author(s) 2009. This article is published with open access at Springerlink.com Abstract Competition for floral resources is a key force Species that recruit larger numbers of nestmates (Scapto- shaping pollinator communities, particularly among social trigona aff. depilis, Trigona hyalinata, Trigona spinipes) bees. The ability of social bees to recruit nestmates for dominated both numerically (high local abundance) and group foraging is hypothesized to be a major factor in their behaviorally (controlling feeders). Removal of group- ability to dominate rich resources such as mass-flowering foraging species increased feeding opportunities for solitary trees. We tested the role of group foraging in attaining foragers (Frieseomelitta varia, Melipona quadrifasciata dominance by stingless bees, eusocial tropical pollinators and Nannotrigona testaceicornis). Trigona hyalinata that exhibit high diversity in foraging strategies. We provide always dominated under unrestricted conditions. When this the first experimental evidence that meliponine group species was removed, T. spinipes or S. aff. depilis controlled foraging strategies, large colony sizes and aggressive feeders and limited visitation by solitary-foraging species. behavior form a suite of traits that enable colonies to Because bee foraging patterns determine plant pollination improve dominance of rich resources.
    [Show full text]