Human Plasma Protein C: ISOLATION, CHARACTERIZATION, and MECHANISM of ACTIVATION by Α-THROMBIN

Total Page:16

File Type:pdf, Size:1020Kb

Human Plasma Protein C: ISOLATION, CHARACTERIZATION, and MECHANISM of ACTIVATION by Α-THROMBIN Human Plasma Protein C: ISOLATION, CHARACTERIZATION, AND MECHANISM OF ACTIVATION BY α-THROMBIN Walter Kisiel J Clin Invest. 1979;64(3):761-769. https://doi.org/10.1172/JCI109521. Protein C is a vitamin K-dependent protein, which exists in bovine plasma as a precursor of a serine protease. In this study, protein C was isolated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative polyacrylamide gel electrophoresis. Human protein C (Mr = 62,000) contains 23% carbohydrate and is composed of a light chain (Mr = 21,000) and a heavy chain (Mr = 41,000) held together by a disulfide bond(s). The light chain has an amino-terminal sequence of Ala-Asn-Ser-Phe-Leu- and the heavy chain has an aminoterminal sequence ofA sp-Pro-Glu- Asp-Gln. The residues that are identical to bovine protein C are underlined. Incubation of human protein C with human α- thrombin at an enzyme to substrate weight ratio of 1:50 resulted in the formation of activated protein C, an enzyme with serine amidase activity. In the activation reaction, the apparent molecular weight of the heavy chain decreased from 41,000 to 40,000 as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. No apparent change in the molecular weight of the light chain was observed in the activation process. The heavy chain of human activated protein C also contains the active-site serine residue as evidenced by its ability to react with radiolabeled diisopropyl fluorophosphate. Human activated protein C markedly […] Find the latest version: https://jci.me/109521/pdf Human Plasma Protein C ISOLATION, CHARACTERIZATION, AND MECHANISM OF ACTIVATION BY a-THROMBIN WALTER KISIEL, Department of Biochemistry, University of Washingtont, Seattle, Washington 98195 A B S TR A C T Protein C is a vitamin K-dependent like its bovine counterpart, exists in plasma as a zymo- protein, which exists in bovine plasma as a precursor gen and is converted to a serine protease by limited of a serine protease. In this study, protein C was iso- proteolysis with attendant anticoagulant activity. lated to homogeneity from human plasma by barium citrate adsorption and elution, ammonium sulfate frac- INTRODUCTION tionation, DEAE-Sephadex chromatography, dextran sulfate agarose chromatography, and preparative poly- Earlier work has demonstrated that protein C is a vita- acrylamide gel electrophoresis. Human protein C (M, min K-dependent glycoprotein, which exists in bovine = 62,000) contains 23% carbohydrate and is composed plasma as a precursor of a serine protease (2-4). Bovine of a light chain (M, = 21,000) and a heavy chain (Mr protein C is composed of a heavy chain (Mr = 41,000) = 41,000) held together by a disulfide bond(s). The and a light chain (Mr = 21,000) held together by a di- light chain has an amino-terminal sequence of Ala- sulfide bond(s). Incubation of bovine protein C vith Asn-Ser-Phe-Leu- and the heavy chain has an amino- either a-thrombin or a protease from Russell's viper terminal sequence of Asp-Pro-Glu-Asp-Gln. The resi- venom (RVV-X)l resulted in the cleavage of an Arg-Ile dues that are identical to bovine protein C are under- peptide bond between residues 14 and 15 of the heavy lined. Incubation of human protein C with human chain with the concomitant activation of the zymogen. a-thrombin at an enzyme to substrate weight ratio of The heavy chain of activated protein C contains the 1:50 resulted in the formation of activated protein C, amino-terminal sequence of Ile-Val-Asp-Gly and an an enzyme with serine amidase activity. In the activa- active-site sequence homologous with a number of tion reaction, the apparent molecular weight of the plasma serine proteases (4). heavy chain decreased from 41,000 to 40,000 as de- Previous work from our laboratory has shown that termined by gel electrophoresis in the presence of bovine activated protein C exhibits anticoagulant ac- sodium dodecyl sulfate. No apparent change in the tivity in the presence of phospholipid and calcium ions molecular weight of the light chain was observed in the (5). From our present information, it appears highly activation process. The heavy chain of human activated probable that activated protein C is responsible for the protein C also contains the active-site serine residue anticoagulant activity described by Marciniak nearly as evidenced by its ability to react with radiolabeled a decade ago (6). Experiments employing homogeneous diisopropyl fluorophosphate. Human activated protein protein preparations indicate that the anticoagulant C markedly prolongs the kaolin-cephalin clotting time effect of activated protein C is caused in part by the of human plasma, but not that of bovine plasma. The inactivation of factor Va.2 This inactivation reaction amidolytic and anticoagulant activities of human acti- involves the proteolytic cleavage of specific polypep- vated protein C were completely obviated by prior in- tide chains in the factor Va molecule (8). The inactiva- cubation of the enzyme with diisopropyl fluorophos- tion of factor Va by activated protein C requires phos- phate. These results indicate that human protein C, pholipid and calcium ions, and was inhibited by prior I Abbreviations used in this paper: DFP, diisopropyl fluoro- A preliminary report of this work has appeared elsewhere (1). phosphate; Mes, 2-(N-morpholino)ethanesulfonic acid; RW-X, Dr. Kisiel is an Established Investigator of the American the protease from Russell's viper venom that activates factor X; Heart Association. SDS, sodium dodecyl sulfate. Received for publication 2 April 1979 and in revised form 2 The nomenclature for the various clotting factors is that 14 May 1979. recommended by an international nomenclature committee (7). J. Clin. Invest. © The American Society for Clinical Investigation, Inc. * 0021-973817910910761/09 $1.00 761 Volume 64 September 1979 761 -769 incubation of the enzyme with diisopropyl fluorophos- tein content was determined by amino acid analyses after phate (DFP) (8). hydrolyzing an aliquot of the sample in 6 N HCI for 24 h at protein 110°C in evacuated tubes. In this article, a procedure for the isolation of SDS-polyacrylamide gel electrophoresis was performed as C from human plasma is presented along with some of described (4) employing 10% polyacrylamide gels. the molecular properties of the purified protein. In Amino acid analyses were carried out by standard proce- addition, the mechanism of activation of human protein dures (18, 19) employing a Durrum model D500 amino acid C by thrombin is described. This mechanism is essen- analyzer (Durrum Instrument Corp., Sunnyvale, Calif.). Tryp- tophan was determined by the procedure of Hugli and Moore tially identical with that previously observed for bovine (20), and half-cystine was determined as cysteic acid according protein C when it is activated by either trypsin (3, 4), to Hirs (21). RW-X (4), or a-thrombin (5). Neuraminic acid was determined according to Warren (22). Hexose and hexosamine were determined after hydrolysis of METHODS the sample (500-1,000 ,ug) in 90% glacial acetic acid contain- ing 0.5 N H2SO4 for 8 h at 80°C under a nitrogen atmosphere. DEAE-Sephadex A-50, SP-Sephadex C-50, Sephadex G-150, Inositol was added to the sample to serve as an internal stand- Sephadex G-50, Sephadex G-15, Sepharose 4B and dextran ard. After hydrolysis, the sugars were reduced and acetylated sulfate were products of Pharmacia Fine Chemicals, Piscataway, according to Yang and Hakomori (23). Sugars were identified N. J. Imidazole (Grade I), soybean trypsin inhibitor (type and quantitated by gas chromatography and mass spectrometry II-S), bovine serum albumin, ovalbumin, carbonic anhydrase, employing a gas chromatograph (model 402; Hewlett-Packard myoglobin, Coomassie Brilliant Blue R, dithiothreitol, lyo- Co., Palo Alto, Calif.) and a gas chromatograph-mass spec- philized Vipera russelli venom, thiobarbituric acid, N-acetyl- trometer (model 330; Finnigan Corp., Sunnyvale, Calif.). neuraminic acid, factor II-deficient bovine plasma, factor Glass columns (6 ft x Ys in) containing 3% OV-225 on Supel- X-deficient bovine plasma, and Tris (Trizma) base were ob- coport were used (Supelco Inc., Bellefonte, Pa.). The columns tained from Sigma Chemical Co., St. Louis, Mo. Kaolin (acid were usually programmed for 10 min at 1600C followed by a washed) was purchased from Fisher Scientific Co., Fair Lawn, 1°C/min rise to 210°C. N. J. Factor IX- and factor VII-deficient human plasmas were Automated Edman degradations were performed with a obtained from George King Bio-Medical, Inc., Overland Park, Beckman sequencer (model 890C; Beckman Instruments, Kans. Benzamidine hydrochloride, DFP, cyclohexanone, and Inc., Fullerton, Calif.) by a modification of the technique de- 4-vinyl pyridine were purchased from Aldrich Chemical Co., scribed by Edman and Begg (24). Dilute Quadrol (0.1 M; Milwaukee, Wis. Ammonium sulfate (enzyme grade) and BASF Wyandotte Corp., Industrial Chemicals Group; Wyan- guanidine hydrochloride (ultrapure) were supplied by dotte, Mich.) was employed as the coupling buffer. Phenyl- Schwarz/Mann Div. Becton, Dickinson & Co., Orangeburg, thiohydantoin (Pth) amino acids were identified and quanti- N. Y., Sodium dodecyl sulfate (SDS) was obtained from British tated by high pressure liquid chromatography (25, 26). For Drug House, Poole, England. Acrylamide, N,N'-methylene- amino-terminal analyses, -3 mg of the S-pyridylethylated bisacrylamide, N,N,N',N'-tetramethylethylenediamine, and heavy chain of protein C and 2 mg of the S-pyridylethylated urea (electrophoresis grade) were purchased from Bio-Rad light chain of protein C were used. All analyses were per- Laboratories, Richmond, Calif. Diisopropyl N-[1-3H]fluoro- formed in duplicate. phosphate (0.9 Ci/mmol) was obtained from New England Amidase activity of activated protein C was measured as Nuclear, Boston, Mass.
Recommended publications
  • Identification of an Alpha-1 Antitrypsin Variant with Enhanced Specificity For
    www.nature.com/scientificreports OPEN Identifcation of an alpha‑1 antitrypsin variant with enhanced specifcity for factor XIa by phage display, bacterial expression, and combinatorial mutagenesis Varsha Bhakta1, Mostafa Hamada2, Amy Nouanesengsy2, Jessica Lapierre2, Darian L. Perruzza2 & William P. Shefeld1,2* Coagulation Factor XIa (FXIa) is an emerging target for antithrombotic agent development. The M358R variant of the serpin alpha‑1 antitrypsin (AAT) inhibits both FXIa and other proteases. Our aim was to enhance the specifcity of AAT M358R for FXIa. We randomized two AAT M358R phage display libraries at reactive centre loop positions P13‑P8 and P7‑P3 and biopanned them with FXIa. A bacterial expression library randomized at P2′‑P3′ was also probed. Resulting novel variants were expressed as recombinant proteins in E. coli and their kinetics of FXIa inhibition determined. The most potent FXIa‑inhibitory motifs were: P13‑P8, HASTGQ; P7‑P3, CLEVE; and P2‑P3′, PRSTE (respectively, novel residues bolded). Selectivity for FXIa over thrombin was increased up to 34‑fold versus AAT M358R for these single motif variants. Combining CLEVE and PRSTE motifs in AAT‑RC increased FXIa selectivity for thrombin, factors XIIa, Xa, activated protein C, and kallikrein by 279‑, 143‑, 63‑, 58‑, and 36‑fold, respectively, versus AAT M358R. AAT‑RC lengthened human plasma clotting times less than AAT M358R. AAT‑RC rapidly and selectively inhibits FXIa and is worthy of testing in vivo. AAT specifcity can be focused on one target protease by selection in phage and bacterial systems coupled with combinatorial mutagenesis. Trombosis, the blockage of intact blood vessels by occlusive clots, continues to impose a heavy clinical burden, and is responsible for one quarter of deaths world-wide1.
    [Show full text]
  • The Rare Coagulation Disorders
    Treatment OF HEMOPHILIA April 2006 · No. 39 THE RARE COAGULATION DISORDERS Paula HB Bolton-Maggs Department of Haematology Manchester Royal Infirmary Manchester, United Kingdom Published by the World Federation of Hemophilia (WFH) © World Federation of Hemophilia, 2006 The WFH encourages redistribution of its publications for educational purposes by not-for-profit hemophilia organizations. In order to obtain permission to reprint, redistribute, or translate this publication, please contact the Communications Department at the address below. This publication is accessible from the World Federation of Hemophilia’s web site at www.wfh.org. Additional copies are also available from the WFH at: World Federation of Hemophilia 1425 René Lévesque Boulevard West, Suite 1010 Montréal, Québec H3G 1T7 CANADA Tel. : (514) 875-7944 Fax : (514) 875-8916 E-mail: [email protected] Internet: www.wfh.org The Treatment of Hemophilia series is intended to provide general information on the treatment and management of hemophilia. The World Federation of Hemophilia does not engage in the practice of medicine and under no circumstances recommends particular treatment for specific individuals. Dose schedules and other treatment regimes are continually revised and new side effects recognized. WFH makes no representation, express or implied, that drug doses or other treatment recommendations in this publication are correct. For these reasons it is strongly recommended that individuals seek the advice of a medical adviser and/or to consult printed instructions provided by the pharmaceutical company before administering any of the drugs referred to in this monograph. Statements and opinions expressed here do not necessarily represent the opinions, policies, or recommendations of the World Federation of Hemophilia, its Executive Committee, or its staff.
    [Show full text]
  • Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: a Comparative in Situ Hybridization Analysis
    The Journal of Neuroscience, March 1993. 73(3): 1258-1279 Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: A Comparative in situ Hybridization Analysis Martin K.-H. Schafer,i-a Robert Day,* William E. Cullinan,’ Michel Chri?tien,3 Nabil G. Seidah,* and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720 and J. A. DeSeve Laboratory of *Biochemical and 3Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W lR7 Posttranslational processing of proproteins and prohor- The participation of neuropeptides in the modulation of a va- mones is an essential step in the formation of bioactive riety of CNS functions is well established. Many neuropeptides peptides, which is of particular importance in the nervous are synthesized as inactive precursor proteins, which undergo system. Following a long search for the enzymes responsible an enzymatic cascade of posttranslational processing and mod- for protein precursor cleavage, a family of Kexin/subtilisin- ification events during their intracellular transport before the like convertases known as PCl, PC2, and furin have recently final bioactive products are secreted and act at either pre- or been characterized in mammalian species. Their presence postsynaptic receptors. Initial endoproteolytic cleavage occurs in endocrine and neuroendocrine tissues has been dem- C-terminal to pairs of basic amino acids such as lysine-arginine onstrated. This study examines the mRNA distribution of (Docherty and Steiner, 1982) and is followed by the removal these convertases in the rat CNS and compares their ex- of the basic residues by exopeptidases. Further modifications pression with the previously characterized processing en- can occur in the form of N-terminal acetylation or C-terminal zymes carboxypeptidase E (CPE) and peptidylglycine a-am- amidation, which is essential for the bioactivity of many neu- idating monooxygenase (PAM) using in situ hybridization ropeptides.
    [Show full text]
  • Proquest Dissertations
    urn u Ottawa L'Universitd canadienne Canada's university FACULTE DES ETUDES SUPERIEURES l^^l FACULTY OF GRADUATE AND ET POSTDOCTORALES u Ottawa POSTDOCTORAL STUDIES I.'University emiadienne Canada's university Charles Gyamera-Acheampong AUTEUR DE LA THESE / AUTHOR OF THESIS Ph.D. (Biochemistry) GRADE/DEGREE Biochemistry, Microbiology and Immunology FACULTE, ECOLE, DEPARTEMENT / FACULTY, SCHOOL, DEPARTMENT The Physiology and Biochemistry of the Fertility Enzyme Proprotein Convertase Subtilisin/Kexin Type 4 TITRE DE LA THESE / TITLE OF THESIS M. Mbikay TIRECTWRTDIRICTR^ CO-DIRECTEUR (CO-DIRECTRICE) DE LA THESE / THESIS CO-SUPERVISOR EXAMINATEURS (EXAMINATRICES) DE LA THESE/THESIS EXAMINERS A. Basak G. Cooke F .Kan V. Mezl Gary W. Slater Le Doyen de la Faculte des etudes superieures et postdoctorales / Dean of the Faculty of Graduate and Postdoctoral Studies Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-59504-6 Our file Notre reference ISBN: 978-0-494-59504-6 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats.
    [Show full text]
  • Coagulation Factors Directly Cleave SARS-Cov-2 Spike and Enhance Viral Entry
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.31.437960; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Coagulation factors directly cleave SARS-CoV-2 spike and enhance viral entry. Edward R. Kastenhuber1, Javier A. Jaimes2, Jared L. Johnson1, Marisa Mercadante1, Frauke Muecksch3, Yiska Weisblum3, Yaron Bram4, Robert E. Schwartz4,5, Gary R. Whittaker2 and Lewis C. Cantley1,* Affiliations 1. Meyer Cancer Center, Department of Medicine, Weill Cornell Medical College, New York, NY, USA. 2. Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA. 3. Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA. 4. Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA. 5. Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA. *Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.03.31.437960; this version posted April 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Coagulopathy is recognized as a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. Other host proteases, including TMPRSS2, are recognized to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing viral entry.
    [Show full text]
  • Blood Coagulation Factor X Exerts Differential Effects on Adenovirus Entry Into Human Lymphocytes
    viruses Article Blood Coagulation Factor X Exerts Differential Effects on Adenovirus Entry into Human Lymphocytes James S. Findlay 1, Graham P. Cook 2 and G. Eric Blair 1,* ID 1 School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; jsfi[email protected] 2 Leeds Institute of Cancer and Pathology, University of Leeds, St. James’s University Hospital, Leeds LS9 7TF, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-113-343-3128 Received: 5 December 2017; Accepted: 30 December 2017; Published: 3 January 2018 Abstract: It has been proposed that blood coagulation factors, principally factor X (FX), enhance the uptake of human adenovirus type 5 (Ad5) into cultured epithelial cells by bridging the viral hexon capsid protein and cell-surface heparan sulphate proteoglycans (HSPGs). We studied the effects of FX on Ad transduction of lymphoid cell lines (NK92MI, a natural killer cell line; Daudi, a B-cell line and Jurkat, a T-cell line) as well as primary peripheral blood lymphocytes (PBL) and HeLa epithelial cells using either replication-deficient Ad5, or a derivative in which the Ad5 fiber was replaced with that of another Ad type, Ad35, termed Ad5F35. PBL and NK92MI were resistant to Ad5 transduction. Transduction of Jurkat and Daudi cells by Ad5 was reduced by FX but without discernible effects on cell-surface Ad5 binding. FX reduced virus binding and transduction of all lymphoid cell lines by Ad5F35, as well as transduction of the T- and Natural Killer (NK)-cell populations of PBL. Flow cytometry analysis showed that all lymphoid cell lines were negative for HSPG components, in contrast to HeLa cells.
    [Show full text]
  • Urokinase and Urokinase Receptor in the Urinary Tract of the Dog Trina Racquel Bailey Louisiana State University and Agricultural and Mechanical College
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2005 Urokinase and urokinase receptor in the urinary tract of the dog Trina Racquel Bailey Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Veterinary Medicine Commons Recommended Citation Bailey, Trina Racquel, "Urokinase and urokinase receptor in the urinary tract of the dog" (2005). LSU Master's Theses. 1457. https://digitalcommons.lsu.edu/gradschool_theses/1457 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. UROKINASE AND UROKINASE RECEPTOR IN THE URINARY TRACT OF THE DOG A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science In The Interdepartmental Program in Veterinary Medical Sciences through the Department of Veterinary Clinical Sciences by Trina Racquel Bailey BSc, Doctor of Veterinary Medicine Atlantic Veterinary College, University of Prince Edward Island, 2000 December 2005 To my husband John, who has been there to help me through it all. To my son Ewan, who makes everything worthwhile. To my family and family in law for all their love, help and support. To Dude, Bailey, Sarah, Scamp, Ellie, Abby, and all the other wonderful animals who have been there for me to love and have allowed me to learn.
    [Show full text]
  • Protein C Product Monograph 1995 COAMATIC® Protein C Protein C
    Protein C Product Monograph 1995 COAMATIC® Protein C Protein C Protein C, Product Monograph 1995 Frank Axelsson, Product Information Manager Copyright © 1995 Chromogenix AB. Version 1.1 Taljegårdsgatan 3, S-431 53 Mölndal, Sweden. Tel: +46 31 706 20 00, Fax: +46 31 86 46 26, E-mail: [email protected], Internet: www.chromogenix.se COAMATIC® Protein C Protein C Contents Page Preface 2 Introduction 4 Determination of protein C activity with 4 snake venom and S-2366 Biochemistry 6 Protein C biochemistry 6 Clinical Aspects 10 Protein C deficiency 10 Assay Methods 13 Protein C assays 13 Laboratory aspects 16 Products 17 Diagnostic kits from Chromogenix 17 General assay procedure 18 COAMATIC® Protein C 19 References 20 Glossary 23 3 Protein C, version 1.1 Preface The blood coagulation system is carefully controlled in vivo by several anticoagulant mechanisms, which ensure that clot propagation does not lead to occlusion of the vasculature. The protein C pathway is one of these anticoagulant systems. During the last few years it has been found that inherited defects of the protein C system are underlying risk factors in a majority of cases with familial thrombophilia. The factor V gene mutation recently identified in conjunction with APC resistance is such a defect which, in combination with protein C deficiency, increases the thrombosis risk considerably. The Chromogenix Monographs [Protein C and APC-resistance] give a didactic and illustrated picture of the protein C environment by presenting a general view of medical as well as technical matters. They serve as an excellent introduction and survey to everyone who wishes to learn quickly about this field of medicine.
    [Show full text]
  • General Considerations of Coagulation Proteins
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 8, No. 2 Copyright © 1978, Institute for Clinical Science General Considerations of Coagulation Proteins DAVID GREEN, M.D., Ph.D.* Atherosclerosis Program, Rehabilitation Institute of Chicago, Section of Hematology, Department of Medicine, and Northwestern University Medical School, Chicago, IL 60611. ABSTRACT The coagulation system is part of the continuum of host response to injury and is thus intimately involved with the kinin, complement and fibrinolytic systems. In fact, as these multiple interrelationships have un­ folded, it has become difficult to define components as belonging to just one system. With this limitation in mind, an attempt has been made to present the biochemistry and physiology of those factors which appear to have a dominant role in the coagulation system. Coagulation proteins in general are single chain glycoprotein molecules. The reactions which lead to their activation are usually dependent on the presence of an appropriate surface, which often is a phospholipid micelle. Large molecular weight cofactors are bound to the surface, frequently by calcium, and act to induce a favorable conformational change in the reacting molecules. These mole­ cules are typically serine proteases which remove small peptides from the clotting factors, converting the single chain species to two chain molecules with active site exposed. The sequence of activation is defined by the enzymes and substrates involved and eventuates in fibrin formation. Mul­ tiple alternative pathways and control mechanisms exist throughout the normal sequence to limit coagulation to the area of injury and to prevent interference with the systemic circulation. Introduction RatnofP4 eloquently indicates in an arti­ cle aptly entitled: “A Tangled Web.
    [Show full text]
  • PROTEIN C DEFICIENCY 1215 Adulthood and a Large Number of Children and Adults with Protein C Mutations [6,13]
    Haemophilia (2008), 14, 1214–1221 DOI: 10.1111/j.1365-2516.2008.01838.x ORIGINAL ARTICLE Protein C deficiency N. A. GOLDENBERG* and M. J. MANCO-JOHNSON* *Hemophilia & Thrombosis Center, Section of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, University of Colorado Denver and The ChildrenÕs Hospital, Aurora, CO; and Division of Hematology/ Oncology, Department of Medicine, University of Colorado Denver, Aurora, CO, USA Summary. Severe protein C deficiency (i.e. protein C ment of acute thrombotic events in severe protein C ) activity <1 IU dL 1) is a rare autosomal recessive deficiency typically requires replacement with pro- disorder that usually presents in the neonatal period tein C concentrate while maintaining therapeutic with purpura fulminans (PF) and severe disseminated anticoagulation; protein C replacement is also used intravascular coagulation (DIC), often with concom- for prevention of these complications around sur- itant venous thromboembolism (VTE). Recurrent gery. Long-term management in severe protein C thrombotic episodes (PF, DIC, or VTE) are common. deficiency involves anticoagulation with or without a Homozygotes and compound heterozygotes often protein C replacement regimen. Although many possess a similar phenotype of severe protein C patients with severe protein C deficiency are born deficiency. Mild (i.e. simple heterozygous) protein C with evidence of in utero thrombosis and experience deficiency, by contrast, is often asymptomatic but multiple further events, intensive treatment and may involve recurrent VTE episodes, most often monitoring can enable these individuals to thrive. triggered by clinical risk factors. The coagulopathy in Further research is needed to better delineate optimal protein C deficiency is caused by impaired inactiva- preventive and therapeutic strategies.
    [Show full text]
  • Plasma Kallikrein Modulates Immune Cell Trafficking During Neuroinflammation Via PAR2 and Bradykinin Release
    Plasma kallikrein modulates immune cell trafficking during neuroinflammation via PAR2 and bradykinin release Kerstin Göbela,1,2, Chloi-Magdalini Asaridoua,2, Monika Merkera, Susann Eichlera, Alexander M. Herrmanna, Eva Geußb, Tobias Rucka, Lisa Schüngela,c, Linda Groenewega, Venu Narayanana, Tilman Schneider-Hohendorfa, Catharina C. Grossa, Heinz Wiendla, Beate E. Kehrelc, Christoph Kleinschnitzd,3, and Sven G. Meutha,3 aClinic of Neurology, Institute of Translational Neurology, University of Münster, 48149 Münster, Germany; bDepartment of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany; cClinic of Anesthesiology, Intensive Care and Pain Medicine, Experimental and Clinical Haemostasis, University of Münster, 48149 Münster, Germany; and dDepartment of Neurology, University Hospital Essen, 45147 Essen, Germany Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved November 19, 2018 (received for review June 11, 2018) Blood–brain barrier (BBB) disruption and transendothelial trafficking peptidebradykinin(BK).Atthesametime,KKcanactivateFXIIin of immune cells into the central nervous system (CNS) are pathophys- a positive feedback loop, thereby leading to both activation of the iological hallmarks of neuroinflammatory disorders like multiple scle- intrinsic coagulation cascade and the proinflammatory KKS (14, rosis (MS). Recent evidence suggests that the kallikrein-kinin and 15). Additionally, KK may interact with cell-surface–associated re- coagulation system might participate in this process. Here, we iden- ceptors, such as the protease-activated receptors 1 (PAR1) and 2 tify plasma kallikrein (KK) as a specific direct modulator of BBB in- (PAR2) (16). tegrity. Levels of plasma prekallikrein (PK), the precursor of KK, were As KK has this dual mode of action (inflammation and co- markedly enhanced in active CNS lesions of MS patients.
    [Show full text]
  • Lab Dept: Coagulation Test Name: PROTEIN C CHROMOGENIC
    Lab Dept: Coagulation Test Name: PROTEIN C CHROMOGENIC General Information Lab Order Codes: PRC Protein C Activity Assay; Protein C Immunologic Assay Synonyms: 85303 – Clotting inhibitors or anticoagulants; Protein C activity CPT Codes: Test Includes: Protein C activity Logistics Protein C, along with its cofactor Protein S, acts as a potent anticoagulant Test Indications: by destroying activated Factors 5 and 8. It also stimulates the fibrinolytic system. It is Vitamin K dependent, therefore it is decreased in coumadin therapy or Vitamin K deficiency. Protein C deficiency is a risk factor for thromboembolism. Severe deficiency may cause purpura fulminans in neonates. Incident to a thrombotic event, both procoagulant and regulatory coagulation proteins may be lower than basal state due to excessive consumption or higher than basal state from reactive overproduction. Therefore, it is best not to test for Protein C deficiency during an acute thrombotic event. The Protein C antigen test determines the amount of the molecule present, not its functionality. The Protein C Chromogenic (activity) assay determines the functionality. Therefore, the Protein C Chromogenic (activity) assay is the preferred method. Lab Testing Sections: Coagulation (Minneapolis Campus) Phone Numbers: MIN Lab: 612-813-6280 STP Lab: 651-220-6550 Test Availability: Daily, 24 hours Turnaround Time: 1 – 7 days, performed on Fridays Special Instructions: Elective testing for Protein C deficiency is best done at least 30 days after cessation of Coumadin® therapy. Protein C may be reduced during an acute event (thrombotic, surgical, etc.) therefore it is preferable not to test for it during this time. However a normal value at the time of an acute event excludes a congenital deficiency.
    [Show full text]