Units, Conversations, and Scaling Giving Numbers Meaning and Context Author: Meagan White; Sean S

Total Page:16

File Type:pdf, Size:1020Kb

Units, Conversations, and Scaling Giving Numbers Meaning and Context Author: Meagan White; Sean S Units, Conversations, and Scaling Giving numbers meaning and context Author: Meagan White; Sean S. Lindsay Version 1.4 created January 2020 Learning Goals In this lab, students will • Learn about the metric system • Learn about the units used in science and astronomy • Learn about the units used to measure angles • Learn the two sky coordinate systems used by astronomers • Learn how to perform unit conversions • Learn how to use a spreadsheet for repeated calculations • Measure lengths to collect data used in next week’s lab: Scienctific Measurement Materials • Calculator • Microsoft Excel • String as a crude length measurement tool Pre-lab Questions 1. What is the celestial analog of latitude and longitude? 2. What quantity do the following metric prefixes indicate: Giga-, Mega-, kilo-, centi-, milli-, µicro-, and nano? 3. How many degrees is a Right Ascension “hour”; How many degrees are in an arcmin? Arcsec? 4. Use the “train-track” method to convert 20 ft to inches. 1. Background In any science class, including astronomy, there are important skills and concepts that students will need to use and understand before engaging in experiments and other lab exercises. A broad list of fundamental skills developed in today’s exercise includes: • Scientific units used throughout the international science community, as well as units specific to astronomy. • Unit conversion methods to convert between units for calculations, communication, and conceptualization. • Angular measurements and their use in astronomy. How they are measured, and the angular measurements specific to astronomy. This is important for astronomers coordinate systems, i.e., equatorial coordinates on the celestial sphere. • Familiarity with spreadsheet programs, such as Microsoft Excel, Google Sheets, or OpenOffice. Spreadsheets can organize large sets of calculations and are able to simplify repeated calculations. Many of our lab exercises require use of spreadsheets. 2. Units and Conversions Science is an international effort, and all scientists must be able to share their work between collaborations. So, scientists everywhere strive to use the same units and systems of coordinates. A unit tells you what you are measuring (length, time, mass, etc.), and it is what gives a number meaning. In general, scientists use the metric system to describe measurable quantities. The metric system starts with base units of gram (g) for mass, meter (m) for length, second (s) for time, and Kelvin (K) for temperature. By increasing or decreasing in powers of ten and combining base units, you can form all other metric units. The metric units defined by powers of ten are named using a prefix attached to the base unit. Examples of some of the most common named prefixes in the metric system are given in Table 1. Table 1. Metric System Prefixes Decimal Power of Ten Prefix (abbreviation) 0.000000001 10-9 nano – (n) 0.000001 10-6 micro- (µ) 0.001 10-3 milli- (m) 0.01 10-2 centi- (c) 1 100 1,000 103 kilo- (k) 1,000,000 106 Mega- (M) 1,000,000,000 109 Giga- (G) Table 1 shows that 1 centimeter (cm) is equal to 0.01 meters (m). 1 nanometer (nm) is equal to 10-9 m (0.000000001 m,) and 1 Megasecond (Ms) is equal to 106 m (1,000,000 s). While the gram (g) is the base unit for mass, astronomy and physics often uses the kilogram (1 kg = 1000 g) as the starting unit for mass. The difference between the kilogram and the gram is a factor of 1,000, so be careful which unit you are using. It is frequently necessary to show measurements in units other than the ones measured in an experiment or given to you in a problem. Often, the formulas you will use in this astronomy lab are calculated using specific units. This is because many of the so-called universal constants and other coefficients have specific units for the value given to you. Recall that a number, like a coefficient in an equation, is just a number; it is the assignment of units that gives that number meaning. A typical example of this is you are given a time in years, and you need to use that time interval in seconds to calculate a planetary period using Kepler’s Third Law of Planetary Motion as modified by Newton. A more complicated example of this is the universal gravitational constant, G (usually said “big Gee”), which is 6.67 x 10-11 N m2 kg-2, so you must use force units in Newtons, distance units in meters, and mass units in kilograms. To convert between the units you are given to units that you want, you need to use a conversion factor. A conversion factor is simply a statement that two amounts in different units are equal. For example, there are 12 eggs in one dozen eggs (12 eggs = 1 dozen eggs), there are 100 cm in one meter (100 cm = 1 m), and there are seven days in one week (7 days = 1 week). Using the 100 cm = 1 m conversion factor as an example, let us examine how you can arrange the conversion factor as a fraction equal to 1. 100 cm = 1 m can be written in fraction form with !"" $% or ! % ! % . Note that both of these fractions are equal to 1 since they are the same amount of !"" $% 2 distance. To use a conversion factor, you can use what is called the “train tracks method” demonstrated below. You start with the given amount in the original units, apply your conversion factor in fraction form such that the denominator cancels out the original units, and simplify using arithmetic. Conversion Factor Given Quantity in Original Unit Desired Unit = Converted Answer in Original Unit Desired Unit This conversion method requires that you arrange your conversion factor in fraction form such that the original units “cancel out.” Multiply the Given Quantity by the Conversion Factor in the correct fraction form, and you get a converted answer in your desired units. Four examples of this conversion are given below: 17 Eggs 1 Dozen 500 grams 1 kilogram = 1.4 Dozen eggs = 0.5 kilograms 12 Eggs 1000 grams 37.4 minutes 60 seconds 2.94 miles 1.609 km = 2,224 s = 4.73 km 1 minute 1 mi Often, multiple conversions need to be made to get to the desired unit. The method is the same, but it requires extra steps. You start with your original unit, multiply it by a first conversion factor to convert to a “linking’ unit, and then multiple again by a second version factor to go from the linking unit to the desired unit. In this “chained conversion method,” the train-tracks method still works, but you add more “track.” Examples are given below Chained Conversion Method Example Orig. Unit Linking Unit Desired Unit 5000 m 1 km 0.62 mi 5000 ∗ 0.62 mi = = 3.1 mi Orig. Unit Linking Unit 1000 m 1 km 1000 Chained Conversion Method -Multiple Links Original Unit Linking Unit 1 Linking Unit 2 Linking Unit 3 Desired Unit Converted Orig. Unit Linking Unit 1 Linking Unit 2 Linking Unit 3 = Answer in Desired Unit Chained Conversion Method – 3 Links - Example 1 yr 365.25 days 24 hours 60 min 60 sec = 3.16 x 107 seconds 1 yr 1 day 1 hour 1 min Units like speed are compound units that combine more than one base unit. For example, on a highway you might be driving at the speed limit of 60 miles per hour. To convert miles per hour 3 123456; to say kilometers per hour, you simply have to apply the correct conversion factor to the 789: part your are trying to convert. Here that is miles to kilometers. There are 1.61 km in 1 mile. Compound Units Conversion – Example 1 60 miles 1.61 km km = 96.6 1 hour 1 mile hr You can take it one step further and convert both the miles and the hours to get your speed in meters per second. For this you simply continue the train-tracks, but now you convert the 1 hour to seconds. Then multiply across the top and the bottom, and divide the two numbers Compound Units Conversion – Example 2 60 miles 1.61 km 1000 m 1 hour 1 min 96.6 ∗ 1000 m m = = 26.83 1 hour 1 mile 1 km 60 min 60 s 60 ∗ 60 s s Astronomers deal with objects and distances at such vastly different scales than our normal, everyday human experience, that regular metric units can be difficult to use, even in scientific notation. For example, the Sun has a mass of 1.99 x 1030 kg, or written out, 1,990,000,000,000,000,000,000,000,000,000 kg. Imagine having to type that into a calculator every time you needed to solve a problem involving the mass of the Sun! It would get very cumbersome, very quickly, and it would be prone to user input error. Instead, astronomers use natural astronomical units to describe certain quantities. 30 • The mass of the Sun is defined to be 1 Solar Mass (MSun), and it is equal to 1.99 x 10 kg. • The distance that light travels in one year is called 1 light-year (ly), and it is equal to 9.46 x 1015 m. • The average distance between the Earth and the Sun is defined to be 1 Astronomical Unit (AU), and it is equal to 1.5 x 1011 m. In fact, any natural, measurable quantity can be given its own unit. Further examples are MEarth for the mass of Earth, RJupiter for the radius of Jupiter, and so on.
Recommended publications
  • AS/NZS ISO 6709:2011 ISO 6709:2008 ISO 6709:2008 Cor.1 (2009) AS/NZS ISO 6709:2011 AS/NZS ISO 6709:2011
    AS/NZS ISO 6709:2011 ISO 6709:2008 ISO 6709:2008 Cor.1 (2009) AS/NZS ISO 6709:2011AS/NZS ISO Australian/New Zealand Standard™ Standard representation of geographic point location by coordinates AS/NZS ISO 6709:2011 This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee IT-004, Geographical Information/Geomatics. It was approved on behalf of the Council of Standards Australia on 15 November 2011 and on behalf of the Council of Standards New Zealand on 14 November 2011. This Standard was published on 23 December 2011. The following are represented on Committee IT-004: ANZLIC—The Spatial Information Council Australasian Fire and Emergency Service Authorities Council Australian Antarctic Division Australian Hydrographic Office Australian Map Circle CSIRO Exploration and Mining Department of Lands, NSW Department of Primary Industries and Water, Tas. Geoscience Australia Land Information New Zealand Mercury Project Solutions Office of Spatial Data Management The University of Melbourne Keeping Standards up-to-date Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased. Detailed information about joint Australian/New Zealand Standards can be found by visiting the Standards Web Shop at www.saiglobal.com.au or Standards New Zealand web site at www.standards.co.nz and looking up the relevant Standard in the on-line catalogue.
    [Show full text]
  • International Standard
    International Standard INTERNATIONAL ORGANIZATION FOR STANDARDIZATlON.ME~YHAPO~HAR OPI-AHH3AWlR fl0 CTAH~APTM3Al&lM.ORGANISATION INTERNATIONALE DE NORMALISATION Standard representation of latitude, longitude and altitude for geographic Point locations Reprksen ta tion normalis6e des latitude, longitude et altitude pbur Ia localisa tion des poin ts gkographiques First edition - 1983-05-15i Teh STANDARD PREVIEW (standards.iteh.ai) ISO 6709:1983 https://standards.iteh.ai/catalog/standards/sist/40603644-5feb-4b20-87de- d0a2bddb21d5/iso-6709-1983 UDC 681.3.04 : 528.28 Ref. No. ISO 67094983 (E) Descriptors : data processing, information interchange, geographic coordinates, representation of data. Price based on 3 pages Foreword ISO (the International Organization for Standardization) is a worldwide federation of national Standards bodies (ISO member bedies). The work of developing International Standards is carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been authorized has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. International Standard ISO 6709 was developediTeh Sby TTechnicalAN DCommitteeAR DISO/TC PR 97,E VIEW Information processing s ystems, and was circulated to the member bodies in November 1981. (standards.iteh.ai) lt has been approved by the member bodies of the following IcountriesSO 6709 :1: 983 https://standards.iteh.ai/catalog/standards/sist/40603644-5feb-4b20-87de- Belgium France d0a2bddRomaniab21d5/is o-6709-1983 Canada Germany, F.
    [Show full text]
  • QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata
    QUICK REFERENCE GUIDE Latitude, Longitude and Associated Metadata The Property Profile Form (PPF) requests the property name, address, city, state and zip. From these address fields, ACRES interfaces with Google Maps and extracts the latitude and longitude (lat/long) for the property location. ACRES sets the remaining property geographic information to default values. The data (known collectively as “metadata”) are required by EPA Data Standards. Should an ACRES user need to be update the metadata, the Edit Fields link on the PPF provides the ability to change the information. Before the metadata were populated by ACRES, the data were entered manually. There may still be the need to do so, for example some properties do not have a specific street address (e.g. a rural property located on a state highway) or an ACRES user may have an exact lat/long that is to be used. This Quick Reference Guide covers how to find latitude and longitude, define the metadata, fill out the associated fields in a Property Work Package, and convert latitude and longitude to decimal degree format. This explains how the metadata were determined prior to September 2011 (when the Google Maps interface was added to ACRES). Definitions Below are definitions of the six data elements for latitude and longitude data that are collected in a Property Work Package. The definitions below are based on text from the EPA Data Standard. Latitude: Is the measure of the angular distance on a meridian north or south of the equator. Latitudinal lines run horizontal around the earth in parallel concentric lines from the equator to each of the poles.
    [Show full text]
  • AS/NZS ISO 6709:2008 Standard Representation of Latitude, Longitude
    AS/NZS ISO 6709:2008 ISO 6709:1983 AS/NZS ISO 6709:2008 Australian/New Zealand Standard™ Standard representation of latitude, longitude and altitude for geographic point locations AS/NZS ISO 6709:2008 This Joint Australian/New Zealand Standard was prepared by Joint Technical Committee IT-004, Geographical Information/Geomatics. It was approved on behalf of the Council of Standards Australia on 25 July 2008 and on behalf of the Council of Standards New Zealand on 21 July 2008. This Standard was published on 16 September 2008. The following are represented on Committee IT-004: ACT Planning and Land Authority ANZLIC - the Spatial Information Council Australian Antarctic Division Australian Bureau of Statistics Australian Hydrographic Office Australian Key Centre In Land Information Studies Australian Map Circle Australian Spatial Information Business Association CSIRO Exploration & Mining Department for Administrative and Information Services (SA) Department of Defence (Australia) Department of Lands NSW Department of Natural Resources and Water (Qld) Department of Planning and Infrastructure (NT) Department of Primary Industries and Water Tasmania Department of Sustainability and Environment (Victoria) Geoscience Australia InterGovernmental Committee on Surveying and Mapping Land Information New Zealand Office of Spatial Data Management Western Australian Land Information System Keeping Standards up-to-date Standards are living documents which reflect progress in science, technology and systems. To maintain their currency, all Standards are periodically reviewed, and new editions are published. Between editions, amendments may be issued. Standards may also be withdrawn. It is important that readers assure themselves they are using a current Standard, which should include any amendments which may have been published since the Standard was purchased.
    [Show full text]
  • IR 473 Selecting the Correct Datum, Coordinate System and Projection
    internal RUQ report q22eqh22qheX eleting2the2orret dtumD2 oordinte system2nd2projetion for2north2eustrlin pplitions tfg2vowry perury2 PHHR WGS – AGD – GDA: Selecting the correct datum, coordinate system and projection for north Australian applications JBC Lowry Hydrological and Ecological Processes Program Environmental Research Institute of the Supervising Scientist GPO Box 461, Darwin NT 0801 February 2004 Registry File SG2001/0172 Contents Preface v Quick reference / Frequently Asked Questions vi What is a datum vi What is a projection vi What is a coordinate system vi What datum is used in Kakadu / Darwin / Northern Australia? vi What is WGS84 vi What do AGD, AMG, GDA and MGA stand for? vi Introduction 1 Projections , Datums and Coordinate Systems in Australia 1 Key differences between AGD / GDA 3 MetaData 6 Summary and Recommendations 7 References (and suggested reading) 8 Appendix 1 – Background to projections, datums and coordinate systems 10 Geodesy 10 Coordinate systems 11 Geographic Coordinate systems 11 Spheroids and datums 13 Geocentric datums 13 Local datums 13 Projected Coordinate systems 14 What is a map projection? 15 Example of map projection – UTM 19 Appendix 2 : Background information on the Australia Geodetic Datum and the Geocentric Datum 21 AGD 21 GDA 21 iii iv Preface The Supervising Scientist Division (SSD) undertakes a diverse range of activities for which the use, collection and maintenance of spatial data is an integral activity. These activities range from recording sample site locations with a global positioning system (GPS), through to the compilation and analysis of spatial datasets in a geographic information system (GIS), and the use of remotely sensed data, to simply reading a map.
    [Show full text]
  • Latitude / Longitude the Equator and Parallels of Latitude Longitude the Prime Meridian
    Latitude / Longitude The Equator and Parallels of Latitude Longitude The Prime Meridian • Today the world has agreed the the Prime Meridian or 0° line of longitude runs through the Royal Observatory at Greenwich, England. • Prior to the 1884 International Meridian Conference, most countries defined their own prime meridian running through their own capital city. • The French did not abandon use of their prime meridian, which ran through the Paris Observatory, until 1911. Longitude was difficult to measure at sea • Your longitude is the time difference between high noon at a known longitude (A ship’s home port for example.) and high noon at your current location. • How many degrees does a one hour time difference represent? No Clock No Longitude H3 John Harrison 1740-1757 National Maritime Museum, Greenwich, London, Ministry of Defence Art Collection H4 John Harrison 1755-1759 National Maritime Museum, Greenwich, London, Ministry of Defence Art Collection If the history of navigation intrigues you, I’d suggest you read… • Longitude: The true story of a lone genius who solved the greatest scientific problem of his time. • By Dava Sobel • Also as a PBS Nova show. – On DVD, Netflix has it. Degrees, Minutes, and Seconds • Because measurement of latitude & longitude were so closely tied to time, it made sense to subdivide degrees into minutes and seconds. • A degree is made up of 60 minutes • A minute is made up of 60 seconds DDD° MM' SS" • A latitude / longitude coordinate would be written like… N 37° 22' 30" W 122° 15' 45" W DDD° MM' SS" • A latitude / longitude coordinate would be written like… N 37° 22' 30" W 122° 15' 45" DDD° MM.MMM' • It is now common place to write lat / lon coordinates in a “decimal minutes” format.
    [Show full text]
  • Lesson 1 Brief: Are We There Yet
    Are We There Yet? Mapping It Out with Latitude and Longitude Grade Level Content Standards for 6-8th Subjects Physical Science or Earth & Space Science Duration Preparation: Minimum (<15 min) Activity: 1.5 hour class time Setting Classroom with internet and PowerPoint Objectives: In this lesson students will: 1. Be able to explain the concepts of geographic coordinates, latitude and longitude 2. Calculate distances on a map 3. Understand the distortions and differences between types of 3D and 2D maps Activity Summary In this lesson, students will be introduced to locating points on Earth using geographic coordinates. They will be introduced to the types of models used to understand the shape and locations on Earth’s surface. Students will get to engage in fun activities like creating their own paper globe, finding the geographic locations of famous cities, using a compass and calculating the travel time to Disneyland. Materials ● PowerPoint Presentation ● Globe o Or access to Google Earth ● Activity: Construct a paper globe o Paper o Heavy cardboard o Scissors o Tape or glue ● Worksheet: Latitude and Longitude ● Atlas (optional, if available) ● Navigational compass (optional, if available) ● Video: U.S. National Grid Activity Procedure Engage - The Earth as a Map [Slides 1-3] Holding a globe or looking at Google Earth [link from Slide 3], demonstrate to the students that Earth is a sphere, and we can locate standard points on the surface using geographic coordinates measured in degrees. These geographic coordinates are either calculated from the angular distances of the Earth’s Page 1 Version 2.0 center to the surface of the Earth (latitude) or of the angular distances rotating around the poles from a set point (longitude).
    [Show full text]
  • How to Locate a Fire
    Determining Correct Locations for Fuels Projects and Fires How to answer question 9k on a 1202 form: Question 9 k has three parts: 1. Coordinate system: either L/L (latitude and longitude) or UTM (Universal Transverse Mercator) coordinates 2. L/L coordinates: you must record the map datum*, in addition to the latitude and longitude in decimal degrees, degrees, decimal minutes or degrees, minutes, and seconds (circle lat/long format and enter coordinates). 3. UTM coordinates: must record the map datum*, you must record the UTM zone, in addition to the Easting and Northing coordinates. L/L: What’s Latitude and Longitude? What are the three the Latitude and Longitude formats? How do you convert between them? What are DD, DD:MM.MMM, and DD:MM:SS.S on the 1202 form? Latitude always measures north and south, and longitude always measures east and west. Latitude lines run east and west and are parallel across the earth's surface so think of them as the rungs of a ladder (as in "ladder"-tude). Think of lines of longitude that stretch from the North Pole to the South Pole as "long." Prime Meridian (Longitude) 30º N 10º N 0º 0º 10º S 0º Equator (Latitude) Point of Origin *Note: Map Datum is determined from data source. USGS topographic map usually displays map datum in bottom corner. Web-based tools let the user choose datum. GPS set-up menu lets the user choose datum. In ArcView, calculated and displayed coordinates are the same datum as the base GIS data in the view.
    [Show full text]
  • Iso 6709:2008(E)
    This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-910055 INTERNATIONAL ISO STANDARD 6709 Second edition 2008-07-15 Standard representation of geographic point location by coordinates Représentation normalisée des latitude, longitude et altitude pour la localisation des points géographiques Reference number ISO 6709:2008(E) © ISO 2008 This preview is downloaded from www.sis.se. Buy the entire standard via https://www.sis.se/std-910055 ISO 6709:2008(E) PDF disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. COPYRIGHT PROTECTED DOCUMENT © ISO 2008 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester.
    [Show full text]
  • “Lat/Long” “UTM” Latitude and Longitude (Measured in Universal Transverse Mercator (Measured Degrees N, S, E, Or W from Origin) by Zone, in Meters from Origin)
    Common types of coordinates collected with a GPS receiver: “Lat/Long” “UTM” Latitude and Longitude (measured in Universal Transverse Mercator (measured degrees N, S, E, or W from origin) by Zone, in meters from origin) Prime Meridian Origin Equator (x=0, y=0) Origin for Equator Zone 32N Abuja, Nigeria: 9.05129⁰ N, 7.48482⁰ E Abuja, Nigeria: or 9⁰03’07” N, 7⁰29’08” E 333500 E, 1001500 N, zone 32E • GPS stands for Global Positioning System • managed by US dept. of defense • system of 24 or more satellites orbiting earth • every 12 hours, at altitude of 20,200 km Getting an accurate reading: At least 4 satellites need to be “locked in” by the GPS unit with an unobstructed signal: ideally one overhead and 3 closer to the horizon. Unit will not operate properly indoors or too close to buildings or vegetation. Satellite positions change from day to day and at different times of day. Point Averaging can increase position accuracy. More About Geographic Coordinates • Lat/Long is given in degrees (x, y are “degrees E, degrees N”), with negative numbers sometimes used for points S of the equator or W of the prime meridian • UTM is in meters (x, y are “Eastings, Northings”, in a certain zone) • Lat/Long is a description of a point on a sphere--but the Earth is imperfectly shaped, and thus we must use models called “datums” to represent its shape. The most common datum in use around the world today is WGS84. This is the default for GPS receivers and also for Google Earth.
    [Show full text]
  • The Geographic Coordinate System What Is a Coordinate System
    The Geographic Coordinate System What is a coordinate system? Coordinate Systems are ways of splitting up the world in order to form transferable units (numbers) that relate to points on a map. They are very useful, as a set of coordinate values can be given to almost anyone in the world and they can relate the coordinate values to a real life place. Different coordinate systems have different methods of splitting up the earth. A coordinate system enables every location on the earth to be specified by a set of coordinates of known location on a grid. There are two major global coordinate systems, know as the “Geographic Coordinate System” (i.e. latitude and longitude) and the “Universal Transverse Mercator System” (i.e. UTM coordinates). Our study uses the Geographic Coordinate System but there are other coordinate systems that divide the globe differently, like the Universal Transverse Mercator (or UTM) coordinate system, this system divides the Earth into 60 zones vertically, and 20 sections horizontally. They are reported numerically as ‘eastings” and “northings” (e.g. 630084m east, 4833438m north). The most well known coordinate system is the Geographic Coordinate System (GCS), which uses measures of latitude and longitude to determine your location. Lines of latitude run north and south parallel to the equator, with positive numbers representing the northern hemisphere, negative numbers representing the southern hemisphere, and the equator representing 0 degrees latitude. Lines of longitude run east and west parallel to the prime meridian, with positive numbers representing the eastern hemisphere and negative numbers representing the western hemisphere, with the prime meridian representing 0 degrees longitude.
    [Show full text]
  • Spherical Triangles!
    Spherical Triangles! Ast 401/Phy 580 Fall 2015 “Spherical Astronomy” Geometry on the surface of a sphere different than on a flat plane No straight lines! Why do we care? Want to handle angles and arcs on the Celestial Sphere we’ve been discussing! Mastering “spherical trig” will allow us to compute the angular distance between two stars and convert from one coordinate system to another (e.g., equatorial to alt/az). Spherical triangles A, B, and C are angles, measured in degrees or radians) Text a, b, c are lengths of arcs, ALSO measured in degrees or radians Spherical triangles A, B, and C will be 0-180o or 0-π Text a, b, and c will be 0-180o or 0-π Spherical triangles In a plane, the angles of an triangle always Text add up to 180o. In a spherical triangle, they add to ≥ 180o !!! Great Circles • Intersection of plane through the center of sphere. • Radius equals the radius of the sphere. • Any two points on the surface (plus center of sphere) define a unique great circle. • Shortest distance between two points on the surface of the sphere is a curve that is part of a great circle. • Airplanes fly along great circles to conserve fuel. Great and "not-so-great" circles The circle of constant latitude Φ is NOT a great circle. The equator IS a great circle. Important side-bar: what is that in dog-years? We are used to measuring angles in degrees (o). We can divide a degree up into 60 pieces, called arcminutes (').
    [Show full text]