Distributed Ledger Technology Systems: a Conceptual Framework

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Ledger Technology Systems: a Conceptual Framework August 2018 DISTRIBUTED LEDGER TECHNOLOGY SYSTEMS A Conceptual Framework Michel Rauchs Andrew Glidden Brian Gordon Gina Pieters Martino Recanatini François Rostand Kathryn Vagneur Bryan Zhang The Cambridge Centre for Alternative Finance (CCAF) is an international and interdisciplinary research centre based at the University of Cambridge Judge Business School. It is dedicated to the study of innovative instruments, channels, and systems emerging outside of traditional finance. This includes, among others, crowdfunding, marketplace lending, alternative credit and investment analytics, alternative payment systems, cryptocurrencies, distributed ledger technology (e.g. blockchain) as well as related regulations and regulatory innovations (e.g. sandboxes & RegTech). TABLE OF CONTENTS FOREWORD .........................................................................................................7 RESEARCH TEAM ...............................................................................................8 DISCLOSURES ................................................................................................... 10 ACKNOWLEDGEMENTS .............................................................................. 10 EXECUTIVE SUMMARY .................................................................................11 SECTION 1: INTRODUCTION ..................................................................... 15 RATIONALE .....................................................................................................................................................15 OBJECTIVES ................................................................................................................................................... 16 METHODOLOGY ......................................................................................................................................... 16 REPORT STRUCTURE ................................................................................................................................ 17 SECTION 2: DLT SYSTEMS - SETTING THE SCENE ...............................19 2.1 DLT SYSTEMS IN THE LITERATURE .............................................................................................. 19 2.1.1 Definitions ...............................................................................................................................................19 2.1.2 Existing Frameworks ..........................................................................................................................20 2.1.3 Limitations Of Prior Work ...............................................................................................................21 2.2 WHAT ARE DLT SYSTEMS? ............................................................................................................... 21 2.3 CLARIFYING TERMINOLOGY.........................................................................................................25 The ‘Ledger’ Concept .....................................................................................................................................25 The ‘private key’ concept .............................................................................................................................28 2.4 ACTORS .....................................................................................................................................................28 2.4.1 Developers ..............................................................................................................................................29 2.4.2 Administrators ......................................................................................................................................30 2.4.3 Gateways .................................................................................................................................................30 2.4.4 Participants .............................................................................................................................................30 SECTION 3: INTRODUCING THE FRAMEWORK ................................. 33 3.1 PROTOCOL LAYER ...............................................................................................................................34 3.2 NETWORK LAYER ................................................................................................................................35 3.3 DATA LAYER ............................................................................................................................................36 Reference/Value Linking ..............................................................................................................................37 3.4 PUTTING IT ALL TOGETHER ...........................................................................................................37 SECTION 4: SYSTEM INTERACTIONS .......................................................41 4.1 WITHIN THE SYSTEM BOUNDARIES .......................................................................................... 41 4.1.1 Layer Interdependencies .................................................................................................................41 4.1.2 Layer Hierarchy ....................................................................................................................................41 4.1.3 Trade-offs: There Is No ‘One Size Fits All’ ................................................................................43 4.1.4 A Note On ‘Decentralisation’ .........................................................................................................44 4.2 BEYOND THE SYSTEM BOUNDARIES ........................................................................................ 47 4.2.1 Systems Perspective ..........................................................................................................................47 4.2.2 Exogenous And Endogenous References ................................................................................48 SECTION 5: A DEEPER DIVE INTO THE FRAMEWORK ..................... 53 5.1 PROTOCOL LAYER ...............................................................................................................................53 5.1.1 Genesis Component ...........................................................................................................................53 5.1.2 Alteration Component ......................................................................................................................55 5.2 NETWORK LAYER ................................................................................................................................58 5.2.1 Communications Component........................................................................................................58 5.2.2 Transaction Processing Component ..........................................................................................60 5.2.3 Validation Component ......................................................................................................................63 5.3 DATA LAYER ............................................................................................................................................66 5.3.1 Operations Component ....................................................................................................................66 5.3.2 Journal Component ............................................................................................................................68 SECTION 6: APPLYING THE FRAMEWORK - CASE STUDIES ...........71 6.1 BITCOIN .................................................................................................................................................... 71 Protocol ................................................................................................................................................................71 Network ...............................................................................................................................................................72 Data ........................................................................................................................................................................73 6.2 COMPARATIVE ANALYSIS ............................................................................................................... 74 6.2.1 Case Studies ...........................................................................................................................................74 6.2.2 Are These DLT Systems? ..................................................................................................................75 6.2.3 Protocol ....................................................................................................................................................77 6.2.4 Network ...................................................................................................................................................80 6.2.5 Data ............................................................................................................................................................84 6.3 COMPARING KEY DIFFERENCES ACROSS DLT SYSTEM CASE STUDIES .................86 6.3.1 Summarising Framework Results ................................................................................................86 6.3.2 Differences
Recommended publications
  • Peer Co-Movement in Crypto Markets
    Peer Co-Movement in Crypto Markets G. Schwenkler and H. Zheng∗ February 4, 2021y Abstract We show that peer linkages induce significant price co-movement in crypto markets in excess of common risk factors and correlated demand shocks. When large abnormal return shocks hit one crypto, its peers experience unusually large abnormal returns of the opposite sign. These effects are primarily concentrated among smaller peers and revert after several weeks, resulting in predictable returns. We develop trading strategies that exploit this rever- sal, and show that they are profitable even after accounting for trading fees and frictions. We establish our results by identifying crypto peers through co-mentions in online news using novel natural language processing technologies. Keywords: Cryptocurrencies, peers, co-movement, competition, natural language pro- cessing. JEL codes: G12, G14, C82. ∗Schwenkler is at the Department of Finance, Santa Clara University Leavey School of Business. Zheng is at the Department of Finance, Boston University Questrom School of Business. Schwenkler is corresponding author. Email: [email protected], web: http://www.gustavo-schwenkler.com. yThis is a revision of a previous paper by the two authors called \Competition or Contagion: Evidence from Cryptocurrency Markets." We are grateful to Jawad Addoum (discussant), Daniele Bianchi (discussant), Will Cong, Tony Cookson, Sanjiv Das, Seoyoung Kim, Andreas Neuhierl, Farzad Saidi, and Antoinette Schoar, seminar participants at Boston University and the Society for Financial Econometrics, and the participants at the 2020 Finance in the Cloud III Virtual Conference, the 2020 MFA Annual Meeting, the 3rd UWA Blockchain, Cryptocurrency and FinTech Conference, and the 2020 INFORMS Annual Meeting for useful comments and suggestions.
    [Show full text]
  • CASP) Software-Only, Ledger Agnostic, Platform Agnostic, Crypto Agile Bank-Grade Security for Crypto Assets
    Protect Your Crypto Assets with Unbound’s Crypto Assets Security Platform (CASP) Software-Only, Ledger Agnostic, Platform Agnostic, Crypto Agile Bank-Grade Security for Crypto Assets Mathematically proven security Cryptography is one of the foundational security elements used by guarantee – the key material never organizations to protect sensitive data, transactions, services and identities. exists in the clear throughout its At the core of any cryptography implementation is the management of lifecycle including creation, in-use cryptographic keys and their protection from compromise and misuse. and at-rest With crypto assets, the protection of private keys is top priority, since the Any currency, any ledger, any private key is used to sign each transaction. It is therefore mandatory platform, any client to keep the key secure – not only from compromise, but also from any Programmatically derived malicious usage – as it takes only one fraudulent transaction (i.e. a single sign addresses (BIP 32/44) that are operation, to empty a wallet). cryptographically protected Backed by proven mathematical guarantees of security, Unbound’s Crypto Stronger and more flexible than Asset Security Platform (CASP) provides its customers with a software-only multi-signature – ledger-agnostic support of flexible quorum security platform that is as safe as hardware. With CASP, one can fully manage structures, any number of human the keys’ lifecycle, define cryptographically-based approval policies, while and/or servers, internal and supporting any currency, any ledger, any platform and any client type. external, that are required to sign a transaction Any Currency, Any Ledger, Any Platform Infinite scalability – easily scale capacity when and where it is Traditionally, securing the keys and secrets that guard the organizations’ most needed valuable assets required the use of dedicated hardware, such as hardware Intuitive and easy to use SDK – security modules (HSMs) and smartcards.
    [Show full text]
  • Linking Wallets and Deanonymizing Transactions in the Ripple Network
    Proceedings on Privacy Enhancing Technologies ; 2016 (4):436–453 Pedro Moreno-Sanchez*, Muhammad Bilal Zafar, and Aniket Kate* Listening to Whispers of Ripple: Linking Wallets and Deanonymizing Transactions in the Ripple Network Abstract: The decentralized I owe you (IOU) transac- 1 Introduction tion network Ripple is gaining prominence as a fast, low- cost and efficient method for performing same and cross- In recent years, we have observed a rather unexpected currency payments. Ripple keeps track of IOU credit its growth of IOU transaction networks such as Ripple [36, users have granted to their business partners or friends, 40]. Its pseudonymous nature, ability to perform multi- and settles transactions between two connected Ripple currency transactions across the globe in a matter of wallets by appropriately changing credit values on the seconds, and potential to monetize everything [15] re- connecting paths. Similar to cryptocurrencies such as gardless of jurisdiction have been pivotal to their suc- Bitcoin, while the ownership of the wallets is implicitly cess so far. In a transaction network [54, 55, 59] such as pseudonymous in Ripple, IOU credit links and transac- Ripple [10], users express trust in each other in terms tion flows between wallets are publicly available in an on- of I Owe You (IOU) credit they are willing to extend line ledger. In this paper, we present the first thorough each other. This online approach allows transactions in study that analyzes this globally visible log and charac- fiat money, cryptocurrencies (e.g., bitcoin1) and user- terizes the privacy issues with the current Ripple net- defined currencies, and improves on some of the cur- work.
    [Show full text]
  • User Manual Ledger Nano S
    User Manual Ledger Nano S Version control 4 Check if device is genuine 6 Buy from an official Ledger reseller 6 Check the box contents 6 Check the Recovery sheet came blank 7 Check the device is not preconfigured 8 Check authenticity with Ledger applications 9 Summary 9 Learn more 9 Initialize your device 10 Before you start 10 Start initialization 10 Choose a PIN code 10 Save your recovery phrase 11 Next steps 11 Update the Ledger Nano S firmware 12 Before you start 12 Step by step instructions 12 Restore a configuration 18 Before you start 19 Start restoration 19 Choose a PIN code 19 Enter recovery phrase 20 If your recovery phrase is not valid 20 Next steps 21 Optimize your account security 21 Secure your PIN code 21 Secure your 24-word recovery phrase 21 Learn more 22 Discover our security layers 22 Send and receive crypto assets 24 List of supported applications 26 Applications on your Nano S 26 Ledger Applications on your computer 27 Third-Party applications on your computer 27 If a transaction has two outputs 29 Receive mining proceeds 29 Receiving a large amount of small transactions is troublesome 29 In case you received a large amount of small payments 30 Prevent problems by batching small transactions 30 Set up and use Electrum 30 Set up your device with EtherDelta 34 Connect with Radar Relay 36 Check the firmware version 37 A new Ledger Nano S 37 A Ledger Nano S in use 38 Update the firmware 38 Change the PIN code 39 Hide accounts with a passphrase 40 Advanced Passphrase options 42 How to best use the passphrase feature 43
    [Show full text]
  • Crypto-Asset Markets: Potential Channels for Future Financial Stability
    Crypto-asset markets Potential channels for future financial stability implications 10 October 2018 The Financial Stability Board (FSB) is established to coordinate at the international level the work of national financial authorities and international standard-setting bodies in order to develop and promote the implementation of effective regulatory, supervisory and other financial sector policies. Its mandate is set out in the FSB Charter, which governs the policymaking and related activities of the FSB. These activities, including any decisions reached in their context, shall not be binding or give rise to any legal rights or obligations under the FSB’s Articles of Association. Contacting the Financial Stability Board Sign up for e-mail alerts: www.fsb.org/emailalert Follow the FSB on Twitter: @FinStbBoard E-mail the FSB at: [email protected] Copyright © 2018 Financial Stability Board. Please refer to: www.fsb.org/terms_conditions/ Contents Executive Summary ................................................................................................................... 1 1. Introduction ......................................................................................................................... 3 2. Primary risks in crypto-asset markets ................................................................................. 5 2.1 Market liquidity risks ............................................................................................... 5 2.2 Volatility risks .........................................................................................................
    [Show full text]
  • Blockchain & Distributed Ledger Technologies
    Science, Technology Assessment, SEPTEMBER 2019 and Analytics WHY THIS MATTERS Distributed ledger technology (e.g. blockchain) allows users to carry out digital transactions without the need SCIENCE & TECH SPOTLIGHT: for a centralized authority. It could fundamentally change the way government and industry conduct BLOCKCHAIN & DISTRIBUTED business, but questions remain about how to mitigate fraud, money laundering, and excessive energy use. LEDGER TECHNOLOGIES /// THE TECHNOLOGY What is it? Distributed ledger technologies (DLT) like blockchain are a secure way of conducting and recording transfers of digital assets without the need for a central authority. DLT is “distributed” because multiple participants in a computer network (individuals, businesses, etc.), share and synchronize copies of the ledger. New transactions are added in a manner that is cryptographically secured, permanent, and visible to all participants in near real time. Figure 2. How blockchain, a form of distributed ledger technology, acts as a means of payment for cryptocurrencies. Cryptocurrencies like Bitcoin are a digital representation of value and represent the best-known use case for DLT. The regulatory and legal frameworks surrounding cryptocurrencies remain fragmented across Figure 1. Difference between centralized and distributed ledgers. countries, with some implicitly or explicitly banning them, and others allowing them. How does it work? Distributed ledgers do not need a central, trusted authority because as transactions are added, they are verified using what In addition to cryptocurrencies, there are a number of other efforts is known as a consensus protocol. Blockchain, for example, ensures the underway to make use of DLT. For example, Hyperledger Fabric is ledger is valid because each “block” of transactions is cryptographically a permissioned and private blockchain framework created by the linked to the previous block so that any change would alert all other Hyperledger consortium to help develop DLT for a variety of business users.
    [Show full text]
  • GJR-GARCH Volatility Modeling Under NIG and ANN for Predicting Top Cryptocurrencies
    Journal of Risk and Financial Management Article GJR-GARCH Volatility Modeling under NIG and ANN for Predicting Top Cryptocurrencies Fahad Mostafa 1,* , Pritam Saha 2, Mohammad Rafiqul Islam 3 and Nguyet Nguyen 4,* 1 Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA 2 Rawls College of Business, Texas Tech University, Lubbock, TX 79409, USA; [email protected] 3 Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA; [email protected] 4 Department of Mathematics and Statistics, Youngstown State University, Youngstown, OH 44555, USA * Correspondence: [email protected] (F.M.); [email protected] (N.N.) Abstract: Cryptocurrencies are currently traded worldwide, with hundreds of different currencies in existence and even more on the way. This study implements some statistical and machine learning approaches for cryptocurrency investments. First, we implement GJR-GARCH over the GARCH model to estimate the volatility of ten popular cryptocurrencies based on market capitalization: Bitcoin, Bitcoin Cash, Bitcoin SV, Chainlink, EOS, Ethereum, Litecoin, TETHER, Tezos, and XRP. Then, we use Monte Carlo simulations to generate the conditional variance of the cryptocurrencies using the GJR-GARCH model, and calculate the value at risk (VaR) of the simulations. We also estimate the tail-risk using VaR backtesting. Finally, we use an artificial neural network (ANN) for predicting the prices of the ten cryptocurrencies. The graphical analysis and mean square errors (MSEs) from the ANN models confirmed that the predicted prices are close to the market prices. For some cryptocurrencies, the ANN models perform better than traditional ARIMA models. Citation: Mostafa, Fahad, Pritam Saha, Mohammad Rafiqul Islam, and Keywords: artificial neural network; cryptocurrency; GJR-GARCH; NIG; Monte Carlo simulation; Nguyet Nguyen.
    [Show full text]
  • OCC Interpretive Letter 1174: DLT and Stable Coins
    OCC interpretive letter 1174: DLT and stable coins Author: Ousmène Jacques Mandeng, Senior Advisor, Blockchain and Multiparty Systems, Accenture Table of Contents OCC interpretive letter 1174: DLT and stable coins .................................................. 2 OCC’s position on DLT and stable coins ................................................................. 2 DLT-platforms .......................................................................................................... 3 Tokens ..................................................................................................................... 4 Stable coins ............................................................................................................. 4 Token payments ...................................................................................................... 5 Token networks ....................................................................................................... 5 Bank balance sheet tokenization ............................................................................ 6 Next steps ................................................................................................................. 7 Copyright © 2021 Accenture. All rights reserved. 1 United States OCC interpretive letter 1174: DLT and stable coins The United States Office of the Comptroller of the Currency (OCC), a federal supervisor of national banks and cooperative banks, issued new general guidance about stable coins and distributed ledger technology (DLT)
    [Show full text]
  • Defending Against Malicious Reorgs in Tezos Proof-Of-Stake
    Defending Against Malicious Reorgs in Tezos Proof-of-Stake Michael Neuder Daniel J. Moroz Harvard University Harvard University [email protected] [email protected] Rithvik Rao David C. Parkes Harvard University Harvard University [email protected] [email protected] ABSTRACT Conference on Advances in Financial Technologies (AFT ’20), October 21– Blockchains are intended to be immutable, so an attacker who is 23, 2020, New York, NY, USA. ACM, New York, NY, USA , 13 pages. https: //doi.org/10.1145/3419614.3423265 able to delete transactions through a chain reorganization (a ma- licious reorg) can perform a profitable double-spend attack. We study the rate at which an attacker can execute reorgs in the Tezos 1 INTRODUCTION Proof-of-Stake protocol. As an example, an attacker with 40% of the Blockchains are designed to be immutable in order to protect against staking power is able to execute a 20-block malicious reorg at an attackers who seek to delete transactions through chain reorga- average rate of once per day, and the attack probability increases nizations (malicious reorgs). Any attacker who causes a reorg of super-linearly as the staking power grows beyond 40%. Moreover, the chain could double-spend transactions, meaning they commit an attacker of the Tezos protocol knows in advance when an at- a transaction to the chain, receive some goods in exchange, and tack opportunity will arise, and can use this knowledge to arrange then delete the transaction, effectively robbing their counterparty. transactions to double-spend. We show that in particular cases, the Nakamoto [15] demonstrated that, in a Proof-of-Work (PoW) setting, Tezos protocol can be adjusted to protect against deep reorgs.
    [Show full text]
  • Review Articles
    review articles DOI:10.1145/3372115 system is designed to achieve common Software weaknesses in cryptocurrencies security goals: transaction integrity and availability in a highly distributed sys- create unique challenges in responsible tem whose participants are incentiv- revelations. ized to cooperate.38 Users interact with the cryptocurrency system via software BY RAINER BÖHME, LISA ECKEY, TYLER MOORE, “wallets” that manage the cryptograph- NEHA NARULA, TIM RUFFING, AND AVIV ZOHAR ic keys associated with the coins of the user. These wallets can reside on a local client machine or be managed by an online service provider. In these appli- cations, authenticating users and Responsible maintaining confidentiality of crypto- graphic key material are the central se- curity goals. Exchanges facilitate trade Vulnerability between cryptocurrencies and between cryptocurrencies and traditional forms of money. Wallets broadcast cryptocur- Disclosure in rency transactions to a network of nodes, which then relay transactions to miners, who in turn validate and group Cryptocurrencies them together into blocks that are ap- pended to the blockchain. Not all cryptocurrency applications revolve around payments. Some crypto- currencies, most notably Ethereum, support “smart contracts” in which general-purpose code can be executed with integrity assurances and recorded DESPITE THE FOCUS on operating in adversarial on the distributed ledger. An explosion of token systems has appeared, in environments, cryptocurrencies have suffered a litany which particular functionality is ex- of security and privacy problems. Sometimes, these pressed and run on top of a cryptocur- rency.12 Here, the promise is that busi- issues are resolved without much fanfare following ness logic can be specified in the smart a disclosure by the individual who found the hole.
    [Show full text]
  • Governance in Decentralized Networks
    Governance in decentralized networks Risto Karjalainen* May 21, 2020 Abstract. Effective, legitimate and transparent governance is paramount for the long-term viability of decentralized networks. If the aim is to design such a governance model, it is useful to be aware of the history of decision making paradigms and the relevant previous research. Towards such ends, this paper is a survey of different governance models, the thinking behind such models, and new tools and structures which are made possible by decentralized blockchain technology. Governance mechanisms in the wider civil society are reviewed, including structures and processes in private and non-profit governance, open-source development, and self-managed organisations. The alternative ways to aggregate preferences, resolve conflicts, and manage resources in the decentralized space are explored, including the possibility of encoding governance rules as automatically executed computer programs where humans or other entities interact via a protocol. Keywords: Blockchain technology, decentralization, decentralized autonomous organizations, distributed ledger technology, governance, peer-to-peer networks, smart contracts. 1. Introduction This paper is a survey of governance models in decentralized networks, and specifically in networks which make use of blockchain technology. There are good reasons why governance in decentralized networks is a topic of considerable interest at present. Some of these reasons are ideological. We live in an era where detailed information about private individuals is being collected and traded, in many cases without the knowledge or consent of the individuals involved. Decentralized technology is seen as a tool which can help protect people against invasions of privacy. Decentralization can also be viewed as a reaction against the overreach by state and industry.
    [Show full text]
  • Gold Standard for Passive Income on the Blockchain
    Anchor: Gold Standard for Passive Income on the Blockchain Nicholas Platias, Eui Joon Lee, Marco Di Maggio June 2020 Abstract Despite the proliferation of financial products, DeFi has yet to produce a savings product simple and safe enough to gain mass adoption. The price volatility of most cryptoassets makes staking unfit for the vast majority of consumers. On the other end of the spectrum, the cyclical nature of stablecoin interest rates on DeFi staples like Maker and Compound makes those protocols ill-suited for a household savings product. To address this pressing need we introduce Anchor, a savings protocol on the Terra blockchain that offers yield powered by block rewards of major Proof-of-Stake blockchains. Anchor offers a principal-protected stablecoin savings product that pays depositors a stable interest rate. It achieves this by stabilizing the deposit interest rate with block rewards accruing to assets that are used to borrow stablecoins. Anchor will thus offer DeFi’s benchmark interest rate, determined by the yield of the PoS blockchains with highest demand. Ultimately, we envision Anchor to become the gold standard for passive income on the blockchain. 1 Introduction In the past few years we have witnessed explosive growth in Decentralized Finance (DeFi). We have seen the launch of a wide range of financial applications covering a broad range of use cases, including collateralized lending (Compound), decentralized ex- changes (Uniswap) and prediction markets (Augur). Despite early success and a robust influx of brains and capital, DeFi has yet to produce a simple and convenient savings product with broad appeal outside the world of crypto natives.
    [Show full text]