(3) Correlational Studies Relationship Between Variables Scatterplots

Total Page:16

File Type:pdf, Size:1020Kb

(3) Correlational Studies Relationship Between Variables Scatterplots I. Descriptive Statistics (3) Correlational studies Correlation Relationship between variables Studies in which two or more variables are Scatterplots (Scatter Diagrams) measured to find the direction and degree to Measuring Correlation: which they covary. • The Correlation Coefficient: r Covary: Two variables covary when a change in one variable is related to a consistent change in the other variable Relationship between variables Scatterplots (Scatter Diagrams) Postive relationship Bivariate distribution: A relationship between two variables in which, as the value of one variable increases, the value of the other A distribution in which two scores are obtained variable tends to increase also from each subject Negative relationship A relationship between two variables in which, as the value of one variable increases, the value of the other variable tends to decrease Scatterplot: No relationship A graph of a bivariate distribution in which the Lack of relationship. No regularity among the pairs of X variable is plotted on the horizontal axis and values of the variables the Y variable is plotted on the vertical axis Scatterplots (Scatter Diagrams) Scatterplots (Scatter Diagrams) Postive correlation Negative correlation 1 Scatterplots (Scatter Diagrams) Scatterplots (Scatter Diagrams) No correlation Linear relationship A relationship between two variables that can be described by a straight line Curvilinear relationship A relationship between two variables that can be described best with a curved line Measuring Correlation Measuring Correlation Correlation Coefficient Pearson Correlation_ _ Coefficient r = (x - X)(y - Y) / (n s s ) A number between –1 and 1 that describes the ∑ x y r = ∑ z z / n (z score formula) relationship between pairs of variables x y r = (n ∑xy - ∑x ∑y) / [√(n ∑x2 – (∑x)2 ) √(n ∑y2 – (∑y)2 )] Pearson Correlation Coefficient (computational formula) A statistic, symbolized by r, that indicates the What does r mean? degree of linear relationship between two r is a type of mean: the mean of the products of paired z variables measured at the interval or ratio level scores -1 ≤ r ≤ 1 Based on a measure of covariation: Cross Products The value of r is a measure of how well a straight line describes the cluster of dots in a scatterplot Measuring Correlation I. Descriptive Statistics (4) Regression But keep in mind that, … a high correlation Regression Line and Predictive Errors does not mean that there is a cause-effect Least Squares Regression Line relation! Least Squares Regression Equation Experimentation is needed! Standard Error of prediction What is r2? 2 Regression: Building on Regression Line and Correlation Predictive errors Prediction (regression) vs. relation (correlation) When a bivariate distribution shows a linear relationship, it (Simple) linear regression: is sometimes useful to try to Statistical tool used to predict scores on the dependent predict X from Y using a variable from scores on (one) independent variable regression line. This line is conceived as an approximation to the cloud of data observed in the scatterplot. Regression Line and Equation for a line Predictive errors Slope: The amount that Y is predicted to increase for an Predictive error: It is the difference, for each X, between increase of 1 in X. the observed corresponding Y and the value of the Y- Y-intercept: the predicted value for Y when X is 0 (point at coordinate. which the line intercepts the y-axis) The position of the regression line should minimize the total predictive error. y = 2x + 5 Least Squares Regression line Least Squares equation least squares regression line: The least squares regression equation minimizes the total the prediction line that minimizes the total of all squared prediction squared predictive error errors for known Y scores in It has the form: y = mx + n the original correlation analysis. Yˆ = bX + a The slope is: b = r(Sy/Sx_) _ The Y-intercept is: a = Y – bX Assumptions: Linearity and Homoscedasticity 3 Least Squares equation Standard error of prediction The least squares regression equation minimizes the total How to determine the amount of error associated of all squared prediction errors for known Y scores in the with these predictions? original correlation analysis. Standard error of prediction (or Standard error of Yˆ = bX + a the estimate): The slope is: b = r(Sy/S_x) _ The Y-intercept is: a = Y – bX A statistic that indicates the typical distance between a regression line and the actual data points Where do the values for a and b come from? And what do they mean? (see pdf notes) Standard error of prediction What is r2? The squared correlation coefficient (r2): Standard error of prediction (or Standard error of is the proportion of total variance in one the estimate): variable that is predictable from its relationship S = S (1 – r2) y|x y √ with the other variable It is a (rough) measure of the average amount of predictive error by which known Y values deviate from provides a measure of the worth of least predicted Yˆ values squares as predictors It reflects the degree to which the points diverge from the regression line. 2 It reflects the accuracy of the prediction. r = (SStotal – SSerror ) / SStotal 4 .
Recommended publications
  • Uses for Census Data in Market Research
    Uses for Census Data in Market Research MRS Presentation 4 July 2011 Andrew Zelin, Director, Sampling & RMC, Ipsos MORI Why Census Data is so critical to us Use of Census Data underlies almost all of our quantitative work activities and projects Needed to ensure that: – Samples are balanced and representative – ie Sampling; – Results derived from samples reflect that of target population – ie Weighting; – Understanding how demographic and geographic factors affect the findings from surveys – ie Analysis. How would we do our jobs without the use of Census Data? Our work withoutCensusData Our work Regional Assembly What I will cover Introduction, overview and why Census Data is so critical; Census data for sampling; Census data for survey weighting; Census data for statistical analysis; Use of SARs; The future (eg use of “hypercubes”); Our work without Census Data / use of alternatives; Conclusions Census Data for Sampling For Random (pre-selected) Samples: – Need to define stratum sample sizes and sampling fractions; – Need to define cluster size, esp. if PPS – (Need to define stratum / cluster) membership; For any type of Sample: – To balance samples across demographics that cannot be included as quota controls or stratification variables – To determine number of sample points by geography – To create accurate booster samples (eg young people / ethnic groups) Census Data for Sampling For Quota (non-probability) Samples: – To set appropriate quotas (based on demographics); Data are used here at very localised level – ie Census Outputs Census Data for Sampling Census Data for Survey Weighting To ensure that the sample profile balances the population profile Census Data are needed to tell you what the population profile is ….and hence provide accurate weights ….and hence provide an accurate measure of the design effect and the true level of statistical reliability / confidence intervals on your survey measures But also pre-weighting, for interviewer field dept.
    [Show full text]
  • CORRELATION COEFFICIENTS Ice Cream and Crimedistribute Difficulty Scale ☺ ☺ (Moderately Hard)Or
    5 COMPUTING CORRELATION COEFFICIENTS Ice Cream and Crimedistribute Difficulty Scale ☺ ☺ (moderately hard)or WHAT YOU WILLpost, LEARN IN THIS CHAPTER • Understanding what correlations are and how they work • Computing a simple correlation coefficient • Interpretingcopy, the value of the correlation coefficient • Understanding what other types of correlations exist and when they notshould be used Do WHAT ARE CORRELATIONS ALL ABOUT? Measures of central tendency and measures of variability are not the only descrip- tive statistics that we are interested in using to get a picture of what a set of scores 76 Copyright ©2020 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. Chapter 5 ■ Computing Correlation Coefficients 77 looks like. You have already learned that knowing the values of the one most repre- sentative score (central tendency) and a measure of spread or dispersion (variability) is critical for describing the characteristics of a distribution. However, sometimes we are as interested in the relationship between variables—or, to be more precise, how the value of one variable changes when the value of another variable changes. The way we express this interest is through the computation of a simple correlation coefficient. For example, what’s the relationship between age and strength? Income and years of education? Memory skills and amount of drug use? Your political attitudes and the attitudes of your parents? A correlation coefficient is a numerical index that reflects the relationship or asso- ciation between two variables. The value of this descriptive statistic ranges between −1.00 and +1.00.
    [Show full text]
  • What Is Statistic?
    What is Statistic? OPRE 6301 In today’s world. ...we are constantly being bombarded with statistics and statistical information. For example: Customer Surveys Medical News Demographics Political Polls Economic Predictions Marketing Information Sales Forecasts Stock Market Projections Consumer Price Index Sports Statistics How can we make sense out of all this data? How do we differentiate valid from flawed claims? 1 What is Statistics?! “Statistics is a way to get information from data.” Statistics Data Information Data: Facts, especially Information: Knowledge numerical facts, collected communicated concerning together for reference or some particular fact. information. Statistics is a tool for creating an understanding from a set of numbers. Humorous Definitions: The Science of drawing a precise line between an unwar- ranted assumption and a forgone conclusion. The Science of stating precisely what you don’t know. 2 An Example: Stats Anxiety. A business school student is anxious about their statistics course, since they’ve heard the course is difficult. The professor provides last term’s final exam marks to the student. What can be discerned from this list of numbers? Statistics Data Information List of last term’s marks. New information about the statistics class. 95 89 70 E.g. Class average, 65 Proportion of class receiving A’s 78 Most frequent mark, 57 Marks distribution, etc. : 3 Key Statistical Concepts. Population — a population is the group of all items of interest to a statistics practitioner. — frequently very large; sometimes infinite. E.g. All 5 million Florida voters (per Example 12.5). Sample — A sample is a set of data drawn from the population.
    [Show full text]
  • Questionnaire Analysis Using SPSS
    Questionnaire design and analysing the data using SPSS page 1 Questionnaire design. For each decision you make when designing a questionnaire there is likely to be a list of points for and against just as there is for deciding on a questionnaire as the data gathering vehicle in the first place. Before designing the questionnaire the initial driver for its design has to be the research question, what are you trying to find out. After that is established you can address the issues of how best to do it. An early decision will be to choose the method that your survey will be administered by, i.e. how it will you inflict it on your subjects. There are typically two underlying methods for conducting your survey; self-administered and interviewer administered. A self-administered survey is more adaptable in some respects, it can be written e.g. a paper questionnaire or sent by mail, email, or conducted electronically on the internet. Surveys administered by an interviewer can be done in person or over the phone, with the interviewer recording results on paper or directly onto a PC. Deciding on which is the best for you will depend upon your question and the target population. For example, if questions are personal then self-administered surveys can be a good choice. Self-administered surveys reduce the chance of bias sneaking in via the interviewer but at the expense of having the interviewer available to explain the questions. The hints and tips below about questionnaire design draw heavily on two excellent resources. SPSS Survey Tips, SPSS Inc (2008) and Guide to the Design of Questionnaires, The University of Leeds (1996).
    [Show full text]
  • 4. Introduction to Statistics Descriptive Statistics
    Statistics for Engineers 4-1 4. Introduction to Statistics Descriptive Statistics Types of data A variate or random variable is a quantity or attribute whose value may vary from one unit of investigation to another. For example, the units might be headache sufferers and the variate might be the time between taking an aspirin and the headache ceasing. An observation or response is the value taken by a variate for some given unit. There are various types of variate. Qualitative or nominal; described by a word or phrase (e.g. blood group, colour). Quantitative; described by a number (e.g. time till cure, number of calls arriving at a telephone exchange in 5 seconds). Ordinal; this is an "in-between" case. Observations are not numbers but they can be ordered (e.g. much improved, improved, same, worse, much worse). Averages etc. can sensibly be evaluated for quantitative data, but not for the other two. Qualitative data can be analysed by considering the frequencies of different categories. Ordinal data can be analysed like qualitative data, but really requires special techniques called nonparametric methods. Quantitative data can be: Discrete: the variate can only take one of a finite or countable number of values (e.g. a count) Continuous: the variate is a measurement which can take any value in an interval of the real line (e.g. a weight). Displaying data It is nearly always useful to use graphical methods to illustrate your data. We shall describe in this section just a few of the methods available. Discrete data: frequency table and bar chart Suppose that you have collected some discrete data.
    [Show full text]
  • Three Kinds of Statistical Literacy: What Should We Teach?
    ICOTS6, 2002: Schield THREE KINDS OF STATISTICAL LITERACY: WHAT SHOULD WE TEACH? Milo Schield Augsburg College Minneapolis USA Statistical literacy is analyzed from three different approaches: chance-based, fallacy-based and correlation-based. The three perspectives are evaluated in relation to the needs of employees, consumers, and citizens. A list of the top 35 statistically based trade books in the US is developed and used as a standard for what materials statistically literate people should be able to understand. The utility of each perspective is evaluated by reference to the best sellers within each category. Recommendations are made for what content should be included in pre-college and college statistical literacy textbooks from each kind of statistical literacy. STATISTICAL LITERACY Statistical literacy is a new term and both words (statistical and literacy) are ambiguous. In today’s society literacy means functional literacy: the ability to review, interpret, analyze and evaluate written materials (and to detect errors and flaws therein). Anyone who lacks this type of literacy is functionally illiterate as a productive worker, an informed consumer or a responsible citizen. Functional illiteracy is a modern extension of literal literacy: the ability to read and comprehend written materials. Statistics have two functions depending on whether the data is obtained from a random sample. If a statistic is not from a random sample then one can only do descriptive statistics and statistical modeling even if the data is the entire population. If a statistic is from a random sample then one can also do inferential statistics: sampling distributions, confidence intervals and hypothesis tests.
    [Show full text]
  • Descriptive Statistics
    NCSS Statistical Software NCSS.com Chapter 200 Descriptive Statistics Introduction This procedure summarizes variables both statistically and graphically. Information about the location (center), spread (variability), and distribution is provided. The procedure provides a large variety of statistical information about a single variable. Kinds of Research Questions The use of this module for a single variable is generally appropriate for one of four purposes: numerical summary, data screening, outlier identification (which sometimes is incorporated into data screening), and distributional shape. We will briefly discuss each of these now. Numerical Descriptors The numerical descriptors of a sample are called statistics. These statistics may be categorized as location, spread, shape indicators, percentiles, and interval estimates. Location or Central Tendency One of the first impressions that we like to get from a variable is its general location. You might think of this as the center of the variable on the number line. The average (mean) is a common measure of location. When investigating the center of a variable, the main descriptors are the mean, median, mode, and the trimmed mean. Other averages, such as the geometric and harmonic mean, have specialized uses. We will now briefly compare these measures. If the data come from the normal distribution, the mean, median, mode, and the trimmed mean are all equal. If the mean and median are very different, most likely there are outliers in the data or the distribution is skewed. If this is the case, the median is probably a better measure of location. The mean is very sensitive to extreme values and can be seriously contaminated by just one observation.
    [Show full text]
  • Descriptive Statistics Powerpoint Presentation
    Descriptive Statistics Powerpoint Presentation remainsNoel hightail sadist luckily. after LeightonTonalitive halves and petiolar hoarsely Walther or predict heathenize any zaniness. her kites fobs roughcasts and outbidding headlong. Adam How to display the selection, descriptive statistics powerpoint presentation numerical differences in this handout explains how can be very similar to communicate. Different parameters to descriptive statistics are all have been a description of each cell is calculated an unlimited number. Statistical properties of the normal distribution IQ distribution. In percent or design are descriptive statistics powerpoint presentation, the fahrenheit scale is an outlier will be consumed quickly. Descriptive Statistics deal hate the enumeration organization and graphical representation of post from a. This will appear to descriptive statistics powerpoint presentation. 4 Descriptive Statistics and Graphic Displays Statistics in a. These principles can be adapted easily locate other presentation formats such as posters and shepherd show presentations Presenting Descriptive Statistics in Writing. Some of descriptive statistics powerpoint presentation a charge on. Descriptive statistics are used to summarize and adult data. How can be relegated to be displayed in the grouping of the starting the bottom, descriptive statistics powerpoint presentation of area or center measurement median is also be interesting, only if for? Download unlimited PowerPoint Templates Presentation Clipart and 3D Animations. Inferential Statistics Examples In external Life. Stats In Research agreement a resource for learning advanced statistics and had an APA Format paper or Word. Mk hedrick is skewed distribution or symbols overlap, methods for census data do descriptive statistics powerpoint presentation. In another article i consider elementary descriptive statistics Similar material can.
    [Show full text]
  • Analyzing Census Data with Excel – Course Guide Learn How to Use Excel to Summarize, Analyze, and Visualize Census Data
    Analyzing Census Data with Excel – Course Guide Learn how to use Excel to summarize, analyze, and visualize Census data. Developed by Adam Hecktman, Microsoft Director of Technology and Civic Innovation for Chicago Module1: Basic Census Data Access and Table Formatting Module 2: Quick Census Data Analysis in Excel Module 3: Advanced Census Data Access and Hierarchical Charts in Excel Module 4: Advanced Census Data Analysis in Excel Extra Modules: Mapping Census Data in Excel Introduction The U.S. Census Bureau’s mission is to serve as the leading source of quality data about the nation’s people and economy. Whether you are looking for the most current economic indicators or for demographic and socioeconomic characteristics about your community and how they compare statistically to other areas, data from the U.S. Census Bureau are available online through a variety of tools. Every year, the Census Bureau publishes population, socioeconomic, housing and business statistics for all communities in the country. These data can be sorted by several characteristics such as age, sex and race, as well as different levels of geographies from the nation to areas below cities and towns. They can be charted, compared with other data (from inside or outside Census), and can be used to derive insights about the nation’s characteristics. Excel is a tool that many people are familiar with, and many people use every day. Excel can be leveraged to unlock the value of open data of all kinds, and it is particularly well-suited to transforming, analyzing, and visualizing Census data. This course will show how to use Excel to access, manipulate, and visualize Census data.
    [Show full text]
  • Formulating Research Questions and Designing Studies Research Series Session I January 4, 2017 Course Objectives
    Formulating Research Questions and Designing Studies Research Series Session I January 4, 2017 Course Objectives • Design a research question or problem • Differentiate between the different types of research • Formulate what methodology is used to solve a research question or problem • Describe the Research Process: Data Collection and Analysis • Identify the uses of Research What is the Definition of Research? 1: careful or diligent search 2: studious inquiry or examination; especially : investigation or experimentation aimed at the discovery and interpretation of facts, revision of accepted theories or laws in the light of new facts, or practical application of such new or revised theories or laws 3: the collecting of information about a particular subject Merriam-Webster What is the Definition of Research? • The systematic investigation into and study of materials and sources in order to establish facts and reach new conclusions Oxford Dictionary Types of Research • Pure – Abstract and general; concerned with generating new theory, e.g., E=mc2 • Experimental – Manipulation of one variable and its effect on another in a controlled environment, e.g., psychology experiments • Clinical – Clinical setting where strict control over variables is difficult, e.g., drug trials • Applied – Designed to answer a practical question; industry R&D • Descriptive – Describing a group or situation to gain knowledge that may be applied to other groups, e.g., surveys • Laboratory – Performed under tightly controlled surrounding, e.g., basic science research
    [Show full text]
  • Chapter 11. Experimental Design: One-Way Independent Samples Design
    11 - 1 Chapter 11. Experimental Design: One-Way Independent Samples Design Advantages and Limitations Comparing Two Groups Comparing t Test to ANOVA Independent Samples t Test Independent Samples ANOVA Comparing More Than Two Groups Thinking Critically About Everyday Information Quasi-experiments Case Analysis General Summary Detailed Summary Key Terms Review Questions/Exercises 11 - 2 Advantages and Limitations Now that we have introduced the basic concepts of behavioral research, the next five chapters discuss specific research designs. Chapters 11–14 focus on true experimental designs that involve experimenter manipulation of the independent variable and experimenter control over the assignment of participants to treatment conditions. Chapter 15 focuses on alternative research designs in which the experimenter does not manipulate the independent variable and/or does not have control over the assignment of participants to treatment conditions. Let’s return to a topic and experimental design that we discussed earlier. Suppose we are interested in the possible effect of TV violence on aggressive behavior in children. One fairly simple approach is to randomly sample several day-care centers for participants. On a particular day, half of the children in each day-care center are randomly assigned to watch Mister Rogers for 30 minutes, and the other half watch Beast Wars for 30 minutes. The children are given the same instructions by one of the day-care personnel and watch the TV programs in identical environments. Following the TV program, the children play for 30 minutes, and the number of aggressive behaviors is observed and recorded by three experimenters who are “blind” to which TV program each child saw.
    [Show full text]
  • Descriptive Statistics
    ST 380 Probability and Statistics for the Physical Sciences Descriptive Statistics Descriptive and Inferential Statistics Recall that statistical methods are broadly divided into: Descriptive methods, which focus on the characteristics of a particular set of data; Inferential methods, which place the particular data set in a broader context, and allow us to relate what we see in the data to that broader context. Descriptive statistical methods can also be broadly divided into: Graphical displays, such as bar charts; Numerical summaries, such as the mean and standard deviation. 1 / 14 Descriptive Statistics Pictorial and Tabular Methods ST 380 Probability and Statistics for the Physical Sciences Graphical Displays Stem-and-Leaf Display Introduced by John Tukey: FundRsng <- scan("Data/Example-01-01.txt") stem(FundRsng) The numbers on the left are the \stems", and the digits on the right are the \leaves". So for instance the leaf \8" on the row with stem \4" stands for a data value of 48. The original data are given to one decimal place, so the display contains almost the same information. 2 / 14 Descriptive Statistics Pictorial and Tabular Methods ST 380 Probability and Statistics for the Physical Sciences Histogram The histogram is another graphical display that summarizes a set of data: hist(FundRsng) The heights of the blocks in this histogram shows the \frequency" of various ranges of the data: 36 values between 0 and 10, inclusive; 18 values between 10 and 20 (strictly, 10 < x ≤ 20); and so on. 3 / 14 Descriptive Statistics Pictorial and Tabular Methods ST 380 Probability and Statistics for the Physical Sciences Optionally, the histogram can display the \density" of the data: hist(FundRsng, freq = FALSE) In this version, the areas of the blocks (width × height) are the fractions of the data that lie in the same ranges.
    [Show full text]