PDF Download Cryptography Or the History, Principles

Total Page:16

File Type:pdf, Size:1020Kb

PDF Download Cryptography Or the History, Principles CRYPTOGRAPHY OR THE HISTORY, PRINCIPLES AND PRACTICE OF CIPHER- WRITING PDF, EPUB, EBOOK Frederick Edward Hulme | 200 pages | 02 Jan 2013 | Nobel Press | 9785518670006 | English | United Kingdom Cryptography Or the history, principles and practice of cipher- writing PDF Book Seller Inventory S Network Endpoint Security Seller Inventory SJ The receiver of the message would of course have a stick of the same diameter and use it to decipher the message. Readers also enjoyed. Published July 30th by Nabu Press first published About this Item: Paper Back. A short history of cryptography. New and Expanded - Coverage of Cloud security; IoT network security ; and treatment of stream ciphers to keep pace with their growing importance. Published by Gale Research Co Start Exploring. Add to Basket Used Condition: Good. Both of these pioneering books are still in print with Dover today along with more than a dozen other titles of Martin's books. Another way to break Monoalphabetic ciphers is by the use of what is known as frequency analysis, attributed to the Arabs circa C. The study of proverbs is one of exceeding interest and value. About F. Damico As the sophistication of cyber criminals continues to increase, their methods and targets have also evolved. The last pages of the book consider various modern ciphers: The grill; revolving grill; slip-card; Mirabeau; Newark; clock-hands; two-word. Relevant Courses. Booklist "Learn to use the most important codes and methods of secret communication in use since ancient times. Published by Elliot Stock London. May contain inscriptions but text pages will be free from markings. Eric Brandel rated it really liked it Jul 05, William Stallings has authored 19 titles, and counting revised editions, over 40 books on computer security, computer networking, and computer architecture. Damico With the explosion of the use of the Internet for nearly all forms of negotiable instrument exchange, the constant transmission of time sensitive and vital corporate communications, and the ubiquitous presence of malicious software writers, verifying In an age of viruses and hackers, electronic eavesdropping, and electronic fraud on a global scale, security is paramount. Edward Published by Gale Research Co American Libraries. Problems arise when communications between multiple organizations require the use of many public keys and knowing when to use which one. Need an Account? No dust jacket. In he bent his pen towards Cryptography , an exploration of covert communication through history. To see what your friends thought of this book, please sign up. Account Options Anmelden. Cryptographic Hash Functions Seller Image. Additionally, it is important to mention the recently popularized "windtalkers. Two new sections cover: Rapidly emerging topic of lightweight cryptography in response to the Internet of Things and other small embedded systems that require new approaches to cryptography to accommodate the low power requirements, minimum memory, and limited processing power of IoT devices. Condition: Acceptable. By Constantine J. About this Item: Frederick Edward Hulme — was an artist, naturalist and antiquarian who loved to write books. Add to Basket New Condition: New. More information about this seller Contact this seller 1. Electronic Book. In modern times, the public key has been the most common method of cryptography. Condition: Very Good. Cryptography Or the history, principles and practice of cipher- writing Writer In a layered security model, it is often necessary to implement one final prevention control wrapped around sensitive information: encryption. About this Item: Gale Research Co, Crpytography, by its very nature, suggests secrecy and misdirection; therefore, the fact that the history of this topic is short and somewhat inaccessible is of no great surprise. The ciphertext is sent and the recipient uses her private key to recover the plaintext. Rather, it is simply one control among many. As with most commodity security controls, encryption solutions can be managed by anyone; they do not require the special knowledge of the business possessed by you or other members of the internal security and LAN teams. After distribution, there was the chance of codebook capture, loss, or theft. Sign In We're sorry! The use of a common public key and a private key held only by the sender is in use today as a form of asymmetric encryption; one of the uses of this method is for the sender to use the private key to encrypt the message and then anyone who receives the message uses the public key to decipher it. Of all those in the army close to the commander none is more intimate than the secret agent; of all rewards none more liberal than those given to secret agents; of all matters none is more confidential than those relating to secret operations. Software as a service SaaS or storage as a service providers have no access to data while at rest. For them to decrypt the ciphertext, they need our key. Edward Hulme. Also called aliasing, tokenization substitutes an arbitrary value for a PAN. Primary account numbers PANs are not encrypted; they are replaced by a series of alphanumeric characters of the same length. Want to Read Currently Reading Read. It is a shift cipher because we shift the start of the cipher alphabet some number of letters four in our example into the plaintext alphabet. This might seem like a lot of unnecessary complexity, and it often is. The first part of the book explores the basic issues to be addressed by a network security capability and provides a tutorial and survey of cryptography and network security technology. The customizable Notebook lets students easily filter, arrange, and group their notes in a way that makes sense to them. Never assume anything, including encryption, is achieving expected outcomes. Classical Encryption Techniques 4. Published by Createspace Independent Publishing Platform Central key management governed by organization-specific encryption policies is likely the best key management option. AES is a symmetric cipher; it uses the same key for both encryption and decryption. Many organizations store key files on the same system, and often the same drive, as the encrypted database or files. Seller Inventory APC Early cryptographers used three methods to encrypt information: substitution, transposition, and codes. Softcover edition. Giovan Battista Bella, the Vigenere Cipher was the first cipher to use an encryption system with a dynamic changing key. Encryption is not a security panacea. Only the person with the private key corresponding to the public key can decrypt the message, document, etc. Our encrypted message used six cipher alphabets based on our key. You have successfully signed out and will be required to sign back in should you need to download more resources. So why not throw out symmetric encryption and use only asymmetric ciphers? Ethical Hacking. Vigenere Cipher. In addition to doubling, certain letter pairs commonly appear in English text:. Although most medium and large organizations use the hierarchy of trust model, it is important to spend a little time looking at the alternative. Before or while deploying encryption, implement the following controls or processes Olzak, :. Consequently, we can use asymmetric keys to share symmetric keys, encrypt email, and various other processes where key sharing is necessary. This limits the number of points of possible compromise. Number theory 1. Once we began settling, however, the utility of written communication rightly evolved. Reprint of edition in brown boards has very minor shelf-wear, tight, bright, and unmarked. Centralized encryption helps ensure keys are always available and that data is not encrypted when it is not necessary, appropriate, or wanted. Type Non-fiction. Cryptography Or the history, principles and practice of cipher- writing Reviews Please try again. So what is considered a strong key for a cipher like AES? Code security can be improved by combining ciphering with coding. The newsletter highlights recent selections from the journal and useful tips from our blog. Encrypting every piece of data in your organization does not guarantee it is protected from unauthorized access. In Closing The concept described in the last sentence is a critical principle of modern cryptography. This time, the number 3, is a prime example of a key. Again, inspect what you expect. We tend to test our expectations of how our software development creations should work instead of looking for ways they deviate from expected behavior. Only the person with the private key corresponding to the public key can decrypt the message, document, etc. Figure depicts the contents of my personal VeriSign certificate. Coderre, Hon. Codes of Practice. AES is a symmetric cipher; it uses the same key for both encryption and decryption. January 12, Today, we live in a different world. However, it also applies to retail stores. The work is protected by local and international copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Codes of Fair Competition. After performing a risk assessment, if you believe risk is too high because existing controls do not adequately protect sensitive information, encrypt. This enables a process known as asymmetric encryption and decryption. This system of ciphering is unbreakable in both theory and practice if the key-stream remains secret. All a person has to do is to go down the alphabet, juxtapositioning the start of the alphabet to each succeeding letter. Cite this article Pick a style below, and copy the text for your bibliography. Public-key ciphers exploit the computational difficulty of discovering the prime factors of large numbers. Programming Projects: The Instructor's Manual includes a series of small programming projects that cover a broad range of topics, and that can be implemented in any suitable language on any platform. The receiving group would then shift the letters back by the same number and decipher the message Taylor, The student gains an understanding of all of important cryptographic algorithms and is able to assess their relative strengths and weaknesses.
Recommended publications
  • 41760779079990.Pdf
    .CONFIS~Ti;~691 BBS'l'RIOHJB· THE DISTBIBUTION OF THIS SPECIAL TEXT WILL BE RESTRICTED TO REGULARLY ENROLLED EXTENSION COURSE STUDENTS, 'l'O MILITARY PERSONNEL, AND TO OTHER PERSONS COMING WITHIN THE MEANING OF THE PHRASE "FOR OFFICIAL USE ONLY/, ·. ARMY EXTENSION COURSES ~,· ·~~cY-l~~ I!LA)f'~'~ ~ \_ -·----------;-- --·· SPECIAL TEXT No. 166 ADVANCED MILITARY CRYPTOGRAPHY Szcoxn (19'3) EDmox PREPARED UNDER THE DIRECTION OF THE CHIEF SIGNAL OFFICER FOR USE WITH 'I1fE ARMY EXTENSION COURSES .',; ,_ • RSS'fRI<ffRB document contains information affecting the nat1 defense of the United States within the meaning of die · nage Act (U.S. C. -Y,. ~:>· 50: 31, 32). The transmission o · ocument · · or the revelation of its contents in any nl:an any unauthorized person is prohibited. + UNITED STATES GOVERNMENT PRINTING OFFICE ~ (o ~ ~ WASHINGTON : 19'3 . ,. 7.~0NFIDENTIAL Peclassified and approved for release by NSA on 01-14-2014 pursuant to E.O. 1352§ REF ID:A64691 ,·J/ 30 April 1959 Th.is document is re-graded "eEm'!BBrff " of DOD Directive 5200.l dated 8 ~ UP and by autharity of the Directar '2t1:.!i Security ~ncy. ' Paul~w~ S. Willard Colonel, AOC Adjutant Ge.nera.J. • ~· WAR DEPARTMENT, • WAsmNGTON, Februa1"JI S, 1948. Tbis revision of Special Text No. 166, Advanced Milita.ry Cryptog­ raphy (1935), for use with the Anny Extension Courses, is published for the information and guidance of all concerned. BY ORDEB OF THE SlilCBlilTAB.Y OF wAB! :,. G. o. M.ARSHAT,T., General, Ohiejoj8f4. OFFICIAL! JAMES A. ULIO, Major Gemral, 7?i.e Adjut,ant Geneml,. (XI) • SPECIAL TEXT NO.
    [Show full text]
  • Introduction to Public Key Cryptography and Clock Arithmetic Lecture Notes for Access 2010, by Erin Chamberlain and Nick Korevaar
    1 Introduction to Public Key Cryptography and Clock Arithmetic Lecture notes for Access 2010, by Erin Chamberlain and Nick Korevaar We’ve discussed Caesar Shifts and other mono-alphabetic substitution ciphers, and we’ve seen how easy it can be to break these ciphers by using frequency analysis. If Mary Queen of Scots had known this, perhaps she would not have been executed. It was a long time from Mary Queen of Scots and substitution ciphers until the end of the 1900’s. Cryptography underwent the evolutionary and revolutionary changes which Si- mon Singh chronicles in The Code Book. If you are so inclined and have appropriate leisure time, you might enjoy reading Chapters 2-5, to learn some of these historical cryptography highlights: People came up with more complicated substitution ciphers, for example the Vigen`ere square. This Great Cipher of France baffled people for quite a while but a de- termined cryptographer Etienne Bazeries had a Eureka moment after three years of work, cracked the code, and possibly found the true identity of the Man in the Iron Mask, one of the great mysteries of the seventeeth century. Edgar Allan Poe and Sir Arthur Conan Doyle even dabbled in cryptanalysis. Secrecy was still a problem though because the key needed to be sent, and with the key anyone could encrypt and decrypt the messages. Frequency analysis was used to break all of these codes. In 1918 Scherbius invented his Enigma machine, but Alan Turing’s machine (the first computer?) helped in figuring out that supposedly unbreakable code, and hastened the end of the second World War.
    [Show full text]
  • Cryptographyorhioohulmuoft CRYPTOGRAPHY OR the HISTORY, PRINCIPLES, and PRACTICE of CIPHER-WRITING
    Digitized by the Internet Archive in 2007 with funding from IVIicrosoft Corporation http://www.archive.org/details/cryptographyorhiOOhulmuoft CRYPTOGRAPHY OR THE HISTORY, PRINCIPLES, AND PRACTICE OF CIPHER-WRITING ^ w >TOGRA OR The History, Principles, and Practice OF CIPHER-WRITING e<^ BY Fl^EDWARD HULME, F.L.S., F.S.A U\ AUTHOR OF "familiar WILD FLOWERS," " MYTHLAND," " NATURAL HISTORY LORE AND LEGEND," "the birth and development OF ORNAMENT," " WAYSIDK SKETCHES," ETC Heres noiv mystery and hieroglyphic Ben Jonson— The Alchemysi. LONDON WARWICK HOUSE, SALISBURY SQUARE, E.C NEW YORK AND MELBOURNE — CONTENTS CHAPTER I PAGE Meaning of cryptography—Objections to its study—Its legitimate use and value—Historic examples of its employment—Deliglit in the mysterious—Many other ways of conveying secret information—Symbolism of action—The spoken word imprisoned and dispatched —A matter not necessarily secret because one cannot understand it — Egyptian hieroglypliics — Chinese characters—Indian mutiny Greek—Ancient Biblical cryptogram — Sheshach of Jeremiah — Sir Henry Eawlinson thereon—Statements for and against Julius Caesar's secret code—The waxed tablet of Demaratus—Difference between hidden and secret writing—The shaven head a writing tablet—Charle- magne and Alfred the Great as cryptographic experts —Mediaeval authorities—Trithemius the Benedictine " — " Steganographia —Dabbling in the black art Dr. Dee—Batista Porta's book on "Natural Majick" —Invisible writing—Chemical methods by vitriol, alum, etc. —Writing on glass or crystal—Papal In- quisition—Disappearing writing—Messages wrapped round rollers—Two methods—A slave's back the writing surface—Chemical methods of no great value ordinarily—Disadvantages of use— Action of light and heat—Chloride of cobalt, sulphate of copper, etc.
    [Show full text]
  • The Mathemathics of Secrets.Pdf
    THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6
    [Show full text]
  • Enigma Cryptanalysis - Beginnings
    Enigma Cryptanalysis - Beginnings Gaurish Korpal∗ [email protected] July 15, 2015 Abstract Any message may be hidden in two basic ways. The methods of steganography conceal the very existence of the message, for example invisible inks and microdots. The methods of cryptography, on the other hand, do not conceal the presence of a secret message but render it unintelligible as ciphertext, to outsiders by various transformations of the plaintext. Breaking ciphers require ingenuity, creativity and a little math. In this article our focus will be on breaking Enigma ciphers. The skill involved in breaking ciphers is called cryptanalysis. Keywords. Enigma, cryptanalysis, cypher, Caesar, Vigen`ere,Rejewski, Zygalski, Bomba, Bombe 1 Cipher not Code A code is a mapping from some meaningful unit (word, sentence, phrase) into something else (usually a shorter group of symbols). A code requires a codebook, it is simply a list of these mappings. For example we could make up a code where the word Apple is written as 67, historical example of this is \Zimmermann Telegram Code" for more details refer [7]. Ciphers do not involve meaning. Instead they are mechanical operations (known as algorithms) which are performed on the individual or small chunks of letters. A code is stored as a mapping in a codebook, while ciphers transform individual symbols according to an algorithm. It was definitively stated in 1883 by the Dutch linguist Auguste Kerckhoffs von Nieuwenhof in his book La Cryptographie militaire: Kerckhoffs' Principle: The security of a cryptosystem must not depend on keeping secret the crypto-algorithm. The security depends only on keeping secret the key.
    [Show full text]
  • The Enigma History and Mathematics
    The Enigma History and Mathematics by Stephanie Faint A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics m Pure Mathematics Waterloo, Ontario, Canada, 1999 @Stephanie Faint 1999 I hereby declare that I am the sole author of this thesis. I authorize the University of Waterloo to lend this thesis to other institutions or individuals for the purpose of scholarly research. I further authorize the University of Waterloo to reproduce this thesis by pho­ tocopying or by other means, in total or in part, at the request of other institutions or individuals for the purpose of scholarly research. 11 The University of Waterloo requires the signatures of all persons using or pho­ tocopying this thesis. Please sign below, and give address and date. ill Abstract In this thesis we look at 'the solution to the German code machine, the Enigma machine. This solution was originally found by Polish cryptologists. We look at the solution from a historical perspective, but most importantly, from a mathematical point of view. Although there are no complete records of the Polish solution, we try to reconstruct what was done, sometimes filling in blanks, and sometimes finding a more mathematical way than was originally found. We also look at whether the solution would have been possible without the help of information obtained from a German spy. IV Acknowledgements I would like to thank all of the people who helped me write this thesis, and who encouraged me to keep going with it. In particular, I would like to thank my friends and fellow grad students for their support, especially Nico Spronk and Philippe Larocque for their help with latex.
    [Show full text]
  • Encryption Is Futile: Delay Attacks on High-Precision Clock Synchronization 1
    R. ANNESSI, J. FABINI, F.IGLESIAS, AND T. ZSEBY: ENCRYPTION IS FUTILE: DELAY ATTACKS ON HIGH-PRECISION CLOCK SYNCHRONIZATION 1 Encryption is Futile: Delay Attacks on High-Precision Clock Synchronization Robert Annessi, Joachim Fabini, Felix Iglesias, and Tanja Zseby Institute of Telecommunications TU Wien, Austria Email: fi[email protected] Abstract—Clock synchronization has become essential to mod- endanger control decisions, and adversely affect the overall ern societies since many critical infrastructures depend on a functionality of a wide range of (critical) services that depend precise notion of time. This paper analyzes security aspects on accurate time. of high-precision clock synchronization protocols, particularly their alleged protection against delay attacks when clock syn- In recent years, security of clock synchronization received chronization traffic is encrypted using standard network security increased attention as various attacks on clock synchronization protocols such as IPsec, MACsec, or TLS. We use the Precision protocols (and countermeasures) were proposed. For this Time Protocol (PTP), the most widely used protocol for high- reason, clock synchronization protocols need to be secured precision clock synchronization, to demonstrate that statistical whenever used outside of fully trusted network environments. traffic analysis can identify properties that support selective message delay attacks even for encrypted traffic. We furthermore Clock synchronization protocols are specifically susceptible to identify a fundamental conflict in secure clock synchronization delay attacks since the times when messages are sent and between the need of deterministic traffic to improve precision and received have an actual effect on the receiver’s notion of the need to obfuscate traffic in order to mitigate delay attacks.
    [Show full text]
  • Introduction
    ON SOME KNOWN POSSIBLE APPLICATIONS OF QUASIGROUPS IN CRYPTOLOGY Victor Shcherbacov Abstract. It is surveyed known (published) possible application of binary and n-ary quasigroups in cryptology. Mathematics Subject Classification: 20N05, 94A60. Key words and phrases: Cryptology, cryptography, cipher, key, quasigroup, n-ary quasigroup. Introduction Almost all results obtained in branch of application of quasigroups in cryptology and coding theory to the end of eighties years of the XX-th century are described in [20, 21]. In the present survey the main attention is devoted more late articles in this direction. Basic facts on quasigroup theory it is possible to find in [5, 6, 7, 64]. Information on basic fact in cryptology it is possible to find in many books see, for example, [3, 11, 60, 54]. Cryptology is a science that consists form two parts: cryptography and cryptanalysis. Cryp- tography is a science on methods of transformation (ciphering) of information with the purpose of a protection this information from an unlawful user. Cryptanalysis is a science on methods and ways of breaking down of ciphers ([32]). In some sense cryptography is a \defense", i.e. this is a science on construction of new ciphers, but cryptanalysis is an \attack", i.e. this is a science and some kind \art", a set of methods on breaking of ciphers. This situation is similar to situation with intelligence and contr-intelligence. These two objects (cryptography and cryptanalysis) are very closed and there does not exist a good cryptographer that do not know methods of cryptanalysis. It is clear, that cryptology depends from a level of development of a society and a level of development of technology.
    [Show full text]
  • Towards Low Energy Stream Ciphers
    IACR Transactions on Symmetric Cryptology ISSN 2519-173X, Vol. 2018, No. 2, pp. 1–19. DOI:10.13154/tosc.v2018.i2.1-19 Towards Low Energy Stream Ciphers Subhadeep Banik1, Vasily Mikhalev2, Frederik Armknecht2, Takanori Isobe3, Willi Meier4, Andrey Bogdanov5, Yuhei Watanabe6 and Francesco Regazzoni7 1 Security and Cryptography Laboratory (LASEC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland [email protected] 2 University of Mannheim, Mannheim, Germany {mikhalev,armknecht}@uni-mannheim.de 3 University of Hyogo, Hyogo, Japan [email protected] 4 University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Windisch, Switzerland [email protected] 5 Department of Applied Mathematics and Computer Science (DTU Compute), Technical University of Denmark, Kongens Lyngby, Denmark [email protected] 6 National Institute of Advanced Industrial Science and Technology, Osaka, Japan [email protected] 7 Università della Svizzera italiana (USI), Lugano, Switzerland [email protected] Abstract. Energy optimization is an important design aspect of lightweight cryptog- raphy. Since low energy ciphers drain less battery, they are invaluable components of devices that operate on a tight energy budget such as handheld devices or RFID tags. At Asiacrypt 2015, Banik et al. presented the block cipher family Midori which was designed to optimize the energy consumed per encryption and which reduces the energy consumption by more than 30% compared to previous block ciphers. However, if one has to encrypt/decrypt longer streams of data, i.e. for bulk data encryption/decryption, it is expected that a stream cipher should perform even better than block ciphers in terms of energy required to encrypt.
    [Show full text]
  • Design of an Efficient Architecture for Advanced Encryption Standard Algorithm Using Systolic Structures
    International Conference of High Performance Computing (HiPC 2005) Design of an Efficient Architecture for Advanced Encryption Standard Algorithm Using Systolic Structures 1Suresh Sharma, 2T S B Sudarshan 1Student, Computer Science & Engineering, IIT, Khragpur 2 Assistant Professor, Computer Science & Information Systems, BITS, Pilani. fashion and communication with the memory or Abstract: external devices occurs only through the boundary This Paper presents a systolic architecture for cells. Advanced Encryption standard (AES). Use of systolic The architecture uses similarities of encryption and architecture has improved the hardware complexity decryption to provide a high level of performance and the rate of encryption/decryption. Similarities of while keeping the chip size small. The architecture encryption and decryption are used to provide a high is highly regular and scalable. The key size can performance using an efficient architecture. The easily be changed from 128 to 192 or 256 bits by efficiency of the design is quite high due to use of making very few changes in the design. short and balanced combinational paths in the design. The paper is organized as follows. Section 2 gives a The encryption or decryption rate is 3.2-Bits per brief overview of the AES algorithm. In section 3, a clock-cycle and due to the use of pipelined systolic summary of available AES architecture is given and architecture and balanced combinational paths the proposed AES hardware architecture is maximum clock frequency for the design is quite described. The performance of the architecture is high. compared with other implementations in section 4. Concluding remarks are given in section 5. Index terms:- Advanced Encryption standard (AES), Systolic Architecture, processing elements, 2.
    [Show full text]
  • Cryptology: an Historical Introduction DRAFT
    Cryptology: An Historical Introduction DRAFT Jim Sauerberg February 5, 2013 2 Copyright 2013 All rights reserved Jim Sauerberg Saint Mary's College Contents List of Figures 8 1 Caesar Ciphers 9 1.1 Saint Cyr Slide . 12 1.2 Running Down the Alphabet . 14 1.3 Frequency Analysis . 15 1.4 Linquist's Method . 20 1.5 Summary . 22 1.6 Topics and Techniques . 22 1.7 Exercises . 23 2 Cryptologic Terms 29 3 The Introduction of Numbers 31 3.1 The Remainder Operator . 33 3.2 Modular Arithmetic . 38 3.3 Decimation Ciphers . 40 3.4 Deciphering Decimation Ciphers . 42 3.5 Multiplication vs. Addition . 44 3.6 Koblitz's Kid-RSA and Public Key Codes . 44 3.7 Summary . 48 3.8 Topics and Techniques . 48 3.9 Exercises . 49 4 The Euclidean Algorithm 55 4.1 Linear Ciphers . 55 4.2 GCD's and the Euclidean Algorithm . 56 4.3 Multiplicative Inverses . 59 4.4 Deciphering Decimation and Linear Ciphers . 63 4.5 Breaking Decimation and Linear Ciphers . 65 4.6 Summary . 67 4.7 Topics and Techniques . 67 4.8 Exercises . 68 3 4 CONTENTS 5 Monoalphabetic Ciphers 71 5.1 Keyword Ciphers . 72 5.2 Keyword Mixed Ciphers . 73 5.3 Keyword Transposed Ciphers . 74 5.4 Interrupted Keyword Ciphers . 75 5.5 Frequency Counts and Exhaustion . 76 5.6 Basic Letter Characteristics . 77 5.7 Aristocrats . 78 5.8 Summary . 80 5.9 Topics and Techniques . 81 5.10 Exercises . 81 6 Decrypting Monoalphabetic Ciphers 89 6.1 Letter Interactions . 90 6.2 Decrypting Monoalphabetic Ciphers .
    [Show full text]
  • Cumulative Message Authentication Codes for Resource
    1 Cumulative Message Authentication Codes for Resource-Constrained IoT Networks He Li, Vireshwar Kumar, Member, IEEE, Jung-Min (Jerry) Park, Fellow, IEEE, and Yaling Yang, Member, IEEE Abstract—In resource-constrained IoT networks, the use of problems: the computational burden on the devices for gen- conventional message authentication codes (MACs) to provide erating/verifying the MAC, and the additional communication message authentication and integrity is not possible due to the overhead incurred due to the inclusion of the MAC in each large size of the MAC output. A straightforward yet naive solution to this problem is to employ a truncated MAC which message frame/packet. The first problem can be addressed by undesirably sacrifices cryptographic strength in exchange for using dedicated hardware and cryptographic accelerators [11], reduced communication overhead. In this paper, we address this [31]. However, the second problem is not as easy to address. problem by proposing a novel approach for message authentica- tion called Cumulative Message Authentication Code (CuMAC), Problem. The cryptographic strength of a MAC depends which consists of two distinctive procedures: aggregation and on the cryptographic strength of the underlying cryptographic accumulation. In aggregation, a sender generates compact au- primitive (e.g. a hash or block cipher), the size and quality of thentication tags from segments of multiple MACs by using a systematic encoding procedure. In accumulation, a receiver the key, and the size of the MAC output. Hence, a conventional accumulates the cryptographic strength of the underlying MAC MAC scheme typically employs at least a few hundred bits by collecting and verifying the authentication tags.
    [Show full text]