The Structure and Function of Alzheimer's Gamma Secretase
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression of Membrane Proteins in Escherichia Coli
From Biogenesis to Over- expression of Membrane Proteins in Escherichia coli Samuel Wagner Stockholm University © Samuel Wagner, Stockholm 2008 ISBN 978-91-7155-594-6, Pages i-81 Printed in Sweden by Universitetsservice AB, Stockholm 2008 Distributor: Department of Biochemistry and Biophysics, Stockholm University To Claudia. Abstract In both pro- and eukaryotes 20-30% of all genes encode α-helical transmem- brane domain proteins, which act in various and often essential capacities. Notably, membrane proteins play key roles in disease and they constitute more than half of all known drug targets. The natural abundance of membrane proteins is in general too low to con- veniently isolate sufficient material for functional and structural studies. Therefore, most membrane proteins have to be obtained through overexpres- sion. Escherichia coli is one of the most successful hosts for overexpression of recombinant proteins, and T7 RNA polymerase-based expression is the major approach to produce recombinant proteins in E. coli. While the pro- duction of soluble proteins is comparably straightforward, overexpression of membrane proteins remains a challenging task. The yield of membrane lo- calized recombinant membrane protein is usually low and inclusion body formation is a serious problem. Furthermore, membrane protein overexpres- sion is often toxic to the host cell. Although several reasons can be postu- lated, the basis of these difficulties is not completely understood. It is gener- ally believed, that the complex requirements of membrane protein biogenesis significantly contribute to the difficulty of membrane protein overexpres- sion. Therefore, an understanding of membrane protein biogenesis is a pre- requisite for understanding membrane protein overexpression and for de- signing rational strategies to improve overexpression yields. -
Prion Fragment Peptides Are Digested with Membrane Type Matrix Metalloproteinases and Acquire Enzyme Resistance Through Cu2+-Binding
Biomolecules 2014, 4, 510-526; doi:10.3390/biom4020510 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Article Prion Fragment Peptides Are Digested with Membrane Type Matrix Metalloproteinases and Acquire Enzyme Resistance through Cu2+-Binding Aya Kojima 1,2, Motomi Konishi 1 and Toshifumi Akizawa 1,* 1 Analytical Chemistry, Pharmaceutical Science, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan; E-Mails: [email protected] (A.K.); [email protected] (M.K.) 2 Division of Cellular and Molecular Biology, Department of Cancer Biology, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 180-8639, Japan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +81-72-866-3129. Received: 31 January 2014; in revised form: 2 April 2014 / Accepted: 11 April 2014 / Published: 8 May 2014 Abstract: Prions are the cause of neurodegenerative disease in humans and other mammals. The structural conversion of the prion protein (PrP) from a normal cellular protein (PrPC) to a protease-resistant isoform (PrPSc) is thought to relate to Cu2+ binding to histidine residues. In this study, we focused on the membrane-type matrix metalloproteinases (MT-MMPs) such as MT1-MMP and MT3-MMP, which are expressed in the brain as PrPC-degrading proteases. We synthesized 21 prion fragment peptides. Each purified peptide was individually incubated with recombinant MT1-MMP or MT3-MMP in the presence or absence of Cu2+ and the cleavage sites determined by LC-ESI-MS analysis. Recombinant MMP-7 and human serum (HS) were also tested as control. -
ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease
International Journal of Molecular Sciences Review ADAM10 Site-Dependent Biology: Keeping Control of a Pervasive Protease Francesca Tosetti 1,* , Massimo Alessio 2, Alessandro Poggi 1,† and Maria Raffaella Zocchi 3,† 1 Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico S. Martino Largo R. Benzi 10, 16132 Genoa, Italy; [email protected] 2 Proteome Biochemistry, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] 3 Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work as last author. Abstract: Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled recep- tors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular com- plexes, with a special focus on ADAM10, and tumor necrosis factor-α convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial Citation: Tosetti, F.; Alessio, M.; segregation is a complex and powerful regulatory tool. -
Oxidative Lipid Modification of Nicastrin Enhances Amyloidogenic ?-Secretase Activity in Alzheimer's Disease
University of Central Florida STARS Faculty Bibliography 2010s Faculty Bibliography 1-1-2012 Oxidative lipid modification of nicastrin enhances amyloidogenic ?-secretase activity in Alzheimer's disease A-Ryeong Gwon Jong-Sung Park Thiruma V. Arumugam Yong-Kook Kwon Sic L. Chan University of Central Florida SeeFind next similar page works for additional at: https:/ authors/stars.libr ary.ucf.edu/facultybib2010 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Gwon, A-Ryeong; Park, Jong-Sung; Arumugam, Thiruma V.; Kwon, Yong-Kook; Chan, Sic L.; Kim, Seol-Hee; Baik, Sang-Ha; Yang, Sunghee; Yun, Young-Kwang; Choi, Yuri; Kim, Saerom; Tang, Sung-Chun; Hyun, Dong- Hoon; Cheng, Aiwu; Dann, Charles E. III; Bernier, Michel; Lee, Jaewon; Markesbery, William R.; Mattson, Mark P.; and Jo, Dong-Gyu, "Oxidative lipid modification of nicastrin enhances amyloidogenic ?-secretase activity in Alzheimer's disease" (2012). Faculty Bibliography 2010s. 2695. https://stars.library.ucf.edu/facultybib2010/2695 Authors A-Ryeong Gwon, Jong-Sung Park, Thiruma V. Arumugam, Yong-Kook Kwon, Sic L. Chan, Seol-Hee Kim, Sang-Ha Baik, Sunghee Yang, Young-Kwang Yun, Yuri Choi, Saerom Kim, Sung-Chun Tang, Dong-Hoon Hyun, Aiwu Cheng, Charles E. Dann III, Michel Bernier, Jaewon Lee, William R. Markesbery, Mark P. Mattson, and Dong-Gyu Jo This article is available at STARS: https://stars.library.ucf.edu/facultybib2010/2695 Aging Cell (2012) 11, pp559–568 Doi: 10.1111/j.1474-9726.2012.00817.x Oxidative lipid modification of nicastrin enhances amyloidogenic c-secretase activity in Alzheimer’s disease A-Ryeong Gwon,1* Jong-Sung Park,1* Thiruma V. -
Nicastrin Is Required for -Secretase Cleavage of the Drosophila Notch
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Cell, Vol. 2, 69–78, January, 2002, Copyright 2002 by Cell Press Nicastrin Is Required for ␥-Secretase Cleavage of the Drosophila Notch Receptor Yue Hu, Yihong Ye,2 and Mark E. Fortini1 putative transmembrane domains and a large cyto- Department of Genetics plasmic loop, and they are localized predominantly in University of Pennsylvania School of Medicine the ER/Golgi compartment. Mutations in the two known Philadelphia, Pennsylvania 19104 human Presenilin genes PS1 and PS2 account for most cases of early onset, autosomal dominant Alzheimer’s disease (reviewed in Selkoe, 1999; Steiner and Haass, Summary 2000). The PS mutations promote the generation of neu- rotoxic A peptide derivatives of amyloid precursor pro- Nicastrin is genetically linked to Notch/lin-12 signaling tein (APP) by altering the manner in which APP is cleaved in C. elegans and is part of a large multiprotein com- at a site, termed the ␥-secretase site, within its trans- plex along with Presenilin. Here we describe the isola- membrane domain. These observations led to the hy- tion and characterization of Drosophila Nicastrin (Nic) pothesis that Presenilin might itself be the long sought mutants. Nic mutants and tissue clones display char- “␥-secretase” enzyme responsible for this cleavage acteristic Notch-like phenotypes. Genetic and inhi- (Wolfe et al., 1999). Several findings have now provided bitor studies indicate a function for Nicastrin in the strong support for this idea. Elimination of PS1 activity ␥-secretase step of Notch processing, similar to Pre- in knockout mice leads to reduced ␥ cleavage of APP senilin. -
Role of Regulated Proteolysis in the Communication of Bacteria with the Environment
fmolb-07-586497 October 11, 2020 Time: 10:35 # 1 REVIEW published: 15 October 2020 doi: 10.3389/fmolb.2020.586497 Role of Regulated Proteolysis in the Communication of Bacteria With the Environment Sarah Wettstadt and María A. Llamas* Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal. Among other mechanisms, regulated proteolysis is becoming increasingly recognized as a key process in the modulation of the activity of these signal response proteins. Regulated proteolysis can either produce complete degradation or specific cleavage of the target protein, thus modifying its function. Because proteolysis is a fast process, the modulation of signaling proteins activity by this Edited by: process allows for an immediate response to a given signal, which facilitates adaptation Chew Chieng Yeo, to the surrounding environment and bacterial survival. Moreover, regulated proteolysis Sultan Zainal Abidin University, Malaysia is a fundamental process for the transmission of extracellular signals to the cytosol Reviewed by: through the bacterial membranes. By a proteolytic mechanism known as regulated Iain Lamont, intramembrane proteolysis (RIP) transmembrane proteins are cleaved within the plane of University of Otago, New Zealand the membrane to liberate a cytosolic domain or protein able to modify gene transcription. -
Dysfunctional Γ-Secretase in Familial Alzheimer's Disease
HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Neurochem Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2019 July 01. Published in final edited form as: Neurochem Res. 2019 January ; 44(1): 5–11. doi:10.1007/s11064-018-2511-1. Dysfunctional γ-secretase in familial Alzheimer’s disease Michael S. Wolfe Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 USA. Abstract Genetics strongly implicate the amyloid β-peptide (Aβ) in the pathogenesis of Alzheimer’s disease. Dominant missense mutation in the presenilins and the amyloid precursor protein (APP) cause early-onset familial Alzheimer’s disease (FAD). As presenilin is the catalytic component of the γ-secretase protease complex that produces Aβ from APP, mutation of the enzyme or substrate that produce Aβ leads to FAD. However, the mechanism by which presenilin mutations cause FAD has been controversial, with gain of function and loss of function offered as binary choices. This overview will instead present the case that presenilins are dysfunctional in FAD. γ-Secretase is a multi-functional enzyme that proteolyzes the APP transmembrane domain in a complex and processive manner. Reduction in a specific function—the carboxypeptidase trimming of initially formed long Aβ peptides containing most of the transmembrane domain to shorter secreted forms —is an emerging common feature of FAD-mutant γ-secretase complexes. Keywords amyloid; protease; genetics; biochemistry Introduction The deposition of extracellular amyloid plaques and neurofibrillary tangles in the brain are cardinal pathological features of Alzheimer’s disease (AD) (Goedert and Spillantini, 2006). The former are composed primarily of the amyloid β-peptide (Aβ), while the latter are comprised of filaments of the otherwise microtubule-associated protein tau. -
Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase -
Nicastrin (NCSTN) (NM 015331) Human Untagged Clone Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC100655 Nicastrin (NCSTN) (NM_015331) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: Nicastrin (NCSTN) (NM_015331) Human Untagged Clone Tag: Tag Free Symbol: NCSTN Synonyms: ATAG1874 Vector: pCMV6-XL4 E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: None This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 Nicastrin (NCSTN) (NM_015331) Human Untagged Clone – SC100655 Fully Sequenced ORF: >OriGene ORF within SC100655 sequence for NM_015331 edited (data generated by NextGen Sequencing) ATGGCTACGGCAGGGGGTGGCTCTGGGGCTGACCCGGGAAGTCGGGGTCTCCTTCGCCTT CTGTCTTTCTGCGTCCTACTAGCAGGTTTGTGCAGGGGAAACTCAGTGGAGAGGAAGATA TATATCCCCTTAAATAAAACAGCTCCCTGTGTTCGCCTGCTCAACGCCACTCATCAGATT GGCTGCCAGTCTTCAATTAGTGGAGACACAGGGGTTATCCACGTAGTAGAGAAAGAGGAG GACCTACAGTGGGTATTGACTGATGGCCCCAACCCCCCTTACATGGTTCTGCTGGAGAGC AAGCATTTTACCAGGGATTTAATGGAGAAGCTGAAAGGGAGAACCAGCCGAATTGCTGGT CTTGCAGTGTCCTTGACCAAGCCCAGTCCTGCCTCAGGCTTCTCTCCTAGTGTACAGTGC CCAAATGATGGGTTTGGTGTTTACTCCAATTCCTATGGGCCAGAGTTTGCTCACTGCAGA GAAATACAGTGGAATTCGCTGGGCAATGGTTTGGCTTATGAAGACTTTAGTTTCCCCATC TTTCTTCTTGAAGATGAAAATGAAACCAAAGTCATCAAGCAGTGCTATCAAGATCACAAC CTGAGTCAGAATGGCTCAGCACCAACCTTCCCACTATGTGCCATGCAGCTCTTTTCACAC -
Reduced Reelin Expression Accelerates Amyloid-ßplaque
9228 • The Journal of Neuroscience, July 7, 2010 • 30(27):9228–9240 Neurobiology of Disease Reduced Reelin Expression Accelerates Amyloid- Plaque Formation and Tau Pathology in Transgenic Alzheimer’s Disease Mice Samira Kocherhans,1* Amrita Madhusudan,1* Jana Doehner,1* Karin S. Breu,1 Roger M. Nitsch,2 Jean-Marc Fritschy,1 and Irene Knuesel1 1Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland, and 2Division of Psychiatry Research, University of Zurich, CH-8008 Zurich, Switzerland In addition to the fundamental role of the extracellular glycoprotein Reelin in neuronal development and adult synaptic plasticity, alterations in Reelin-mediated signaling have been suggested to contribute to neuronal dysfunction associated with Alzheimer’s disease (AD). In vitro data revealed a biochemical link between Reelin-mediated signaling, Tau phosphorylation, and amyloid precursor protein (APP) processing. To directly address the role of Reelin in amyloid- plaque and Tau pathology in vivo, we crossed heterozygous Reelin knock-out mice (reeler) with transgenic AD mice to investigate the temporal and spatial AD-like neuropathology. We demonstrate that a reduction in Reelin expression results in enhanced amyloidogenic APP processing, as indicated by the precocious production of amyloid- peptides, the significant increase in number and size of amyloid- plaques, as well as age-related aggravation of plaque pathology in double mutant compared with single AD mutant mice of both sexes. Numerous amyloid- plaques accumulate in the hippocampal formation and neocortex of double mutants, precisely in layers with strongest Reelin expression and highest accumulation of Reelin plaques in aged wild-type mice. Moreover, concentric accumulations of phosphorylated Tau-positive neurons around amyloid- plaques were evident in 15-month-old double versus single mutant mice. -
Bottom-Up Structural Proteomics: Cryoem of Protein Complexes Enriched from the Cellular Milieu
ARTICLES https://doi.org/10.1038/s41592-019-0637-y Bottom-up structural proteomics: cryoEM of protein complexes enriched from the cellular milieu Chi-Min Ho 1,2,3,10, Xiaorun Li3,4,10, Mason Lai2,3, Thomas C. Terwilliger 5, Josh R. Beck 6,7, James Wohlschlegel 8, Daniel E. Goldberg6, Anthony W. P. Fitzpatrick9 and Z. Hong Zhou 1,2,3* X-ray crystallography often requires non-native constructs involving mutations or truncations, and is challenged by membrane proteins and large multicomponent complexes. We present here a bottom-up endogenous structural proteomics approach whereby near-atomic-resolution cryo electron microscopy (cryoEM) maps are reconstructed ab initio from unidentified pro- tein complexes enriched directly from the endogenous cellular milieu, followed by identification and atomic modeling of the proteins. The proteins in each complex are identified using cryoID, a program we developed to identify proteins in ab initio cryoEM maps. As a proof of principle, we applied this approach to the malaria-causing parasite Plasmodium falciparum, an organism that has resisted conventional structural-biology approaches, to obtain atomic models of multiple protein complexes implicated in intraerythrocytic survival of the parasite. Our approach is broadly applicable for determining structures of undis- covered protein complexes enriched directly from endogenous sources. he recent ‘resolution revolution’ in cryoEM1–9 has opened the of routinely achievable cryoEM maps. A systematic approach for iden- door for determination of high-resolution structure of a vast tifying a complex from typical near-atomic (3.0–4.0 Å) cryoEM maps Tnumber of previously intractable biological systems. There would be transformative for cryoEM and systems biology, opening the is no need for crystallization because samples for cryoEM are pre- door for structure determination of novel, unidentified molecules and served in a frozen-hydrated state and are randomly oriented within complexes enriched directly from endogenous sources. -
Α-Secretase Nonsense Mutation (ADAM10 Tyr167*) in Familial
Agüero et al. Alzheimer's Research & Therapy (2020) 12:139 https://doi.org/10.1186/s13195-020-00708-0 RESEARCH Open Access α-Secretase nonsense mutation (ADAM10 Tyr167*) in familial Alzheimer’s disease Pablo Agüero1, María José Sainz1, María-Salud García-Ayllón2,3,4, Javier Sáez-Valero2,3, Raquel Téllez5, Rosa Guerrero-López6, Julián Pérez-Pérez7, Adriano Jiménez-Escrig8 and Estrella Gómez-Tortosa1* Abstract Background: The disintegrin metalloproteinase 10 (ADAM10) is the main α-secretase acting in the non- amyloidogenic processing of APP. Some ADAM10 gene variants have been associated with higher susceptibility to develop late-onset AD, though clear clinical-genetic correlates remain elusive. Methods: Clinical-genetic and biomarker study of a first family with early- and late-onset AD associated with a nonsense ADAM10 mutation (p.Tyr167*). CSF analysis included AD core biomarkers, as well as Western blot of ADAM10 species and sAPPα and sAPPβ peptides. We evaluate variant’s pathogenicity, pattern of segregation, and further screened for the p.Tyr167* mutation in 197 familial AD cases from the same cohort, 200 controls from the same background, and 274 AD cases from an independent Spanish cohort. Results: The mutation was absent from public databases and segregated with the disease. CSF Aβ42, total tau, and phosphorylated tau of affected siblings were consistent with AD. The predicted haploinsufficiency effect of the nonsense mutation was supported by (a) ADAM10 isoforms in CSF decreased around 50% and (b) 70% reduction of CSF sAPPα peptide, both compared to controls, while sAPPβ levels remained unchanged. Interestingly, sporadic AD cases had a similar decrease in CSF ADAM10 levels to that of mutants, though their sAPPα and sAPPβ levels resembled those of controls.