Microbial Associations in Corals and Sponges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metagenomics and Metatranscriptomics of the Leaf-And Root-Associated Microbiomes of Zostera Marina and Zostera Japonica
1 Metagenomics and metatranscriptomics of the leaf- and root-associated microbiomes of Zostera marina and Zostera japonica by John Michael Adrian Wojahn A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Baccalaureate of Science in Microbiology and Biology (Honors BS) Presented May 10, 2016 Commencement June 2016 2 3 AN ABSTRACT OF THE THESIS OF John M. A. Wojahn for the degree of Honors Baccalaureate of Science in Microbiology and Biology presented on May 10, 2016. Title: Metagenomics and Metatranscriptomics of the leaf- and root-associated microbiomes of Zostera marina and Zostera japonica . Abstract approved: _____________________________________________ Byron C. Crump A great deal of research has been focused on the microbiomes of terrestrial angiosperms (flowering plants), but much less research has been performed on the microbiomes of aquatic angiosperms (Turner et al. 2013). Eelgrass beds are extremely productive ecosystems that provide habitat for many marine organisms, such as fish, shelfish, crabs, and algae (Smith et al. 1988). Eelgrass beds contribute to storm surge damping (Spalding et al. 2009), nutrient cycling (Smith et al. 1988), and water clarification (Orth et al. 2006). We examined the metagenomics and metatranscriptomics of the leaf- and root- associated microbiomes of Zostera marina and Zostera japonica. In our study, the phylogenetic composition of plant-associated bacterial communities was not significantly different between plant species for leaf communities (ANOSIM P<0.199) and for root communities (ANOSIM P<0.091). However, leaf-, root-, and water column associated bacterial communities were significantly different from one another (ANOSIM, P<0.001). -
Genomic Insight Into the Host–Endosymbiont Relationship of Endozoicomonas Montiporae CL-33T with Its Coral Host
ORIGINAL RESEARCH published: 08 March 2016 doi: 10.3389/fmicb.2016.00251 Genomic Insight into the Host–Endosymbiont Relationship of Endozoicomonas montiporae CL-33T with its Coral Host Jiun-Yan Ding 1, Jia-Ho Shiu 1, Wen-Ming Chen 2, Yin-Ru Chiang 1 and Sen-Lin Tang 1* 1 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan, 2 Department of Seafood Science, Laboratory of Microbiology, National Kaohsiung Marine University, Kaohsiung, Taiwan The bacterial genus Endozoicomonas was commonly detected in healthy corals in many coral-associated bacteria studies in the past decade. Although, it is likely to be a core member of coral microbiota, little is known about its ecological roles. To decipher potential interactions between bacteria and their coral hosts, we sequenced and investigated the first culturable endozoicomonal bacterium from coral, the E. montiporae CL-33T. Its genome had potential sign of ongoing genome erosion and gene exchange with its Edited by: Rekha Seshadri, host. Testosterone degradation and type III secretion system are commonly present in Department of Energy Joint Genome Endozoicomonas and may have roles to recognize and deliver effectors to their hosts. Institute, USA Moreover, genes of eukaryotic ephrin ligand B2 are present in its genome; presumably, Reviewed by: this bacterium could move into coral cells via endocytosis after binding to coral’s Eph Kathleen M. Morrow, University of New Hampshire, USA receptors. In addition, 7,8-dihydro-8-oxoguanine triphosphatase and isocitrate lyase Jean-Baptiste Raina, are possible type III secretion effectors that might help coral to prevent mitochondrial University of Technology Sydney, Australia dysfunction and promote gluconeogenesis, especially under stress conditions. -
Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent. -
Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts
ORIGINAL RESEARCH published: 12 July 2016 doi: 10.3389/fmicb.2016.01042 Endozoicomonas Are Specific, Facultative Symbionts of Sea Squirts Lars Schreiber 1*, Kasper U. Kjeldsen 1, Peter Funch 2, Jeppe Jensen 1, Matthias Obst 3, Susanna López-Legentil 4 and Andreas Schramm 1 1 Department of Bioscience, Center for Geomicrobiology and Section for Microbiology, Aarhus University, Aarhus, Denmark, 2 Section of Genetics, Ecology and Evolution, Department of Bioscience, Aarhus University, Aarhus, Denmark, 3 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 4 Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington NC, USA Ascidians are marine filter feeders and harbor diverse microbiota that can exhibit a high degree of host-specificity. Pharyngeal samples of Scandinavian and Mediterranean ascidians were screened for consistently associated bacteria by culture-dependent and -independent approaches. Representatives of the Endozoicomonas (Gammaproteobacteria, Hahellaceae) clade were detected in the ascidian species Ascidiella aspersa, Ascidiella scabra, Botryllus schlosseri, Ciona intestinalis, Styela clava, and multiple Ascidia/Ascidiella spp. In total, Endozoicomonas was detected in more than half of all specimens screened, and in 25–100% of the specimens for each species. The retrieved Endozoicomonas 16S rRNA gene sequences formed an ascidian-specific subclade, whose members were detected by fluorescence Edited by: in situ hybridization (FISH) as extracellular microcolonies in the pharynx. Two strains Joerg Graf, of the ascidian-specific Endozoicomonas subclade were isolated in pure culture and University of Connecticut, USA characterized. Both strains are chemoorganoheterotrophs and grow on mucin (a Reviewed by: Silvia Bulgheresi, mucus glycoprotein). The strains tested negative for cytotoxic or antibacterial activity. -
Methylamine As a Nitrogen Source for Microorganisms from a Coastal Marine
Methylamine as a Nitrogen Source for Microorganisms from a Coastal Marine Environment Martin Tauberta,b, Carolina Grobb, Alexandra M. Howatb, Oliver J. Burnsc, Jennifer Pratscherb, Nico Jehmlichd, Martin von Bergend,e,f, Hans H. Richnowg, Yin Chenh,1, J. Colin Murrellb,1 aAquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany bSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK cSchool of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany eInstitute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 32, 04103 Leipzig, Germany fDepartment of Chemistry and Bioscience, University of Aalborg, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark. gDepartment of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany hSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK 1To whom correspondence should be addressed. J. Colin Murrell, Phone: +44 (0)1603 59 2959, Email: [email protected], and Yin Chen, Phone: +44 (0)24 76528976, Email: [email protected] Keywords: marine methylotrophs, 15N stable isotope probing, methylamine, metagenomics, metaproteomics Classification: BIOLOGICAL SCIENCES/Microbiology Short title: Methylamine as a Nitrogen Source for Marine Microbes This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.13709 This article is protected by copyright. -
Marine Ecology Progress Series 479:75–84 (2013)
The following supplement accompanies the article Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini Till Bayer1,*, Chatchanit Arif1, Christine Ferrier-Pagès2, Didier Zoccola2, Manuel Aranda1, Christian R. Voolstra1,* 1Red Sea Research Center, King Abdullah University of Science and Technology, 23955 Thuwal, Kingdom of Saudi Arabia 2Centre Scientifique de Monaco, 98000 Monaco, Monaco *Corresponding authors. Emails: [email protected] and [email protected] Marine Ecology Progress Series 479:75–84 (2013) Supplement. Data supplementing the alpha and beta diversity measurements, as well as details of the sample-group to OTU associations W41 W24 1500 W30 1000 G24A Number of O TUs Number of O G30A 500 G41C G24C G30C G30B G41A G41B G24B 0 0 10000 20000 30000 Number of sequences Fig. S1. Rarefaction curves for all samples. Curves show the number of OTUs at different sampling depths. Fig. S2. Principal coordinate analysis of weighted UniFrac distances. The percentages of variability explained by each axis are given in parentheses. 2 Fig. S3. Phylogenetic tree of the Encozoicomonas from Eunicella cavolini (blue) and closely related bacteria. Most bacteria represented originate from marine invertebrates, such as soft corals (Alcyonacea, red) or scleractinian corals (green). Others include bivalves, sponges or sea slugs. EU884929 represents a bacterium from a fish, Pomacanthus sextriatus. Type strains are marked with *. The tree was calculated using PhyML as implemented in ARB, with a GTR substitution model. Bootstrap values are shown for 1000 bootsraps of PhyML, and 1000 bootstraps of a neighborhood joining tree calculated in MEGA 5. Full length 16S sequences obtained from cloning were used for this tree. -
Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. -
Supporting Information
Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs. -
The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities. -
Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran)
Diversity 2014, 6, 102-132; doi:10.3390/d6010102 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Review Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran) Alireza Asem 1,†,*, Amin Eimanifar 2,†,*, Morteza Djamali 3, Patricio De los Rios 4 and Michael Wink 2 1 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China 2 Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany; E-Mail: [email protected] 3 Institut Méditerranéen d’Ecologie et de Paléoécologie UMR 6116 du CNRS-Europôle Méditerranéen de l’Arbois-Pavillon Villemin-BP 80, Aix-en-Provence Cedex 04 13545, France; E-Mail: [email protected] 4 Environmental Sciences School, Natural Resources Faculty, Catholic University of Temuco, Casilla 15-D, Temuco 4780000, Chile; E-Mail: [email protected] † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.A.); [email protected] (A.E.); Tel.: +86-150-6624-4312 (A.A.); Fax: +86-532-8203-2216 (A.A.); Tel.: +49-6221-544-880 (A.E.); Fax: +49-6221-544-884 (A.E.). Received: 3 December 2013; in revised form: 13 January 2014 / Accepted: 27 January 2014 / Published: 10 February 2014 Abstract: Urmia Lake, with a surface area between 4000 to 6000 km2, is a hypersaline lake located in northwest Iran. It is the saltiest large lake in the world that supports life. Urmia Lake National Park is the home of an almost endemic crustacean species known as the brine shrimp, Artemia urmiana. -
Stable-Isotope Probing Implicates Methylophaga Spp and Novel Gammaproteobacteria in Marine Methanol and Methylamine Metabolism
The ISME Journal (2007) 1, 480–491 & 2007 International Society for Microbial Ecology All rights reserved 1751-7362/07 $30.00 www.nature.com/ismej ORIGINAL ARTICLE Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism Josh D Neufeld1, Hendrik Scha¨fer, Michael J Cox2, Rich Boden, Ian R McDonald3 and J Colin Murrell Department of Biological Sciences, University of Warwick, Coventry, UK The metabolism of one-carbon (C1) compounds in the marine environment affects global warming, seawater ecology and atmospheric chemistry. Despite their global significance, marine micro- organisms that consume C1 compounds in situ remain poorly characterized. Stable-isotope probing (SIP) is an ideal tool for linking the function and phylogeny of methylotrophic organisms by the metabolism and incorporation of stable-isotope-labelled substrates into nucleic acids. By combining DNA-SIP and time-series sampling, we characterized the organisms involved in the assimilation of methanol and methylamine in coastal sea water (Plymouth, UK). Labelled nucleic acids were analysed by denaturing gradient gel electrophoresis (DGGE) and clone libraries of 16S rRNA genes. In addition, we characterized the functional gene complement of labelled nucleic acids with an improved primer set targeting methanol dehydrogenase (mxaF) and newly designed primers for methylamine dehydrogenase (mauA). Predominant DGGE phylotypes, 16S rRNA, methanol and methylamine dehydrogenase gene sequences, and cultured isolates all implicated Methylophaga spp, moderately halophilic marine methylotrophs, in the consumption of both methanol and methylamine. Additionally, an mxaF sequence obtained from DNA extracted from sea water clustered with those detected in 13C-DNA, suggesting a predominance of Methylophaga spp among marine methylotrophs. -
Spatial Exploration and Characterization of Endozoicomonas Spp
Spatial Exploration and Characterization of Endozoicomonas spp. Bacteria in Stylophora pistillata Using Fluorescence In Situ Hybridization Thesis by Areej Alsheikh-Hussain In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia December 2011 2 EXAMINATION COMMITTEE APPROVALS FORM The thesis of Areej Alsheikh-Hussain is approved by the examination committee. Committee Chairperson: Chris Voolstra Committee Co-Chair: Amy Apprill Committee Member: Uli Stingl 3 ABSTRACT Spatial Exploration and Characterization of Endozoicomonas spp. Bacteria in Stylophora pistillata Using Fluorescence In Situ Hybridization Areej Alsheikh-Hussain Studies of coral-associated bacterial communities have repeatedly demonstrated that the microbial assemblages of the coral host are highly specific and complex. In particular, bacterial community surveys of scleractinian and soft corals from geographically diverse reefs continually uncover a high abundance of sequences affiliated with the Gammaproteobacteria genus Endozoicomonas. The role of these bacteria within the complex coral holobiont is currently unknown. In order to localize these cells and gain an understanding of their potential interactions within the coral, we developed a fluorescence in situ hybridization (FISH) approach for reef-building coral tissues. Using a custom small-subunit ribosomal RNA gene database, we developed two Endozoicomonas-specific probes that cover almost all known coral-associated