Magnetism of Ferromagnetic Metals Above Their Curie Temperature P.J

Total Page:16

File Type:pdf, Size:1020Kb

Magnetism of Ferromagnetic Metals Above Their Curie Temperature P.J Magnetism of Ferromagnetic Metals above their Curie Temperature P.J. Brown, Grenoble (Institut Laue-Langevin) Although the 3d metals: iron, cobalt pond to integral or half integral S and are tations for a local moment (Heisenberg) and nickel were amongst the first ferro­ generally not consistent with the mo­ and a Stoner system are shown schema­ magnetic materials to be recognised, full ments per atom obtained from the satu­ tically in Fig. 1. understanding of their magnetic proper­ ration magnetisation. The occurrence of For the local moment system, the ma­ ties has lagged far behind that of the less non-integral moments does not pose a gnetic electrons are contained in narrow widely known magnetic insulators such problem If it is accepted that the magne­ bands separated by an amount Eu which as europium oxide. The magnetic pro­ tic electrons belong to a partially filled is the intra-atomic exchange, or Hund's- perties of insulators are well accounted band and thus contribute to the Fermi rule, energy; one spin band is full and the for by the simple Curie Weiss theory in surface. The saturation magnetisation other empty. The interatomic coupling which magnetic moments localised on then measures the mean number of un­ energy is Ej = ΣJijSi•Sj « Eu being the the magnetic ions respond both to exter­ paired electrons per atom, and individual sum of pairwise interactions between nal fields and to an internal field arising atomic moments fluctuate on a time atomic spins Si, Sj. The magnetic excita­ from inter-atomic exchange interactions scale of the order h/W where W is the tions of such a system are collective of the Heisenberg type. This theory band width. transverse fluctuations of the atomic leads to the well known linear depen­ The first collective electron or band moments (spin waves). They have a dence of the inverse magnetic suscepti­ model of ferromagnetism was given by dispersion for T « Tc as indicated in bility on temperature — the Curie Weiss Stoner 1). As in the Curie Weiss theory Fig. 1a with the energy of the spin-wave law. exchange is introduced as a molecular at the Brillouin zone-boundary being = 1 / x = (T-θ)/P2eff field proportional to the mean magneti­ kTc. As the temperature is raised to­ where θ is a temperature related to the sation. This exchange field produces an wards Tc the spin-wave spectrum is Curie temperature, P eff is the effective energy difference between the spin-up thermally populated resulting in a reduc­ local moment. If the ionic moments are and spin-down electron bands causing tion in the ordered component of ma­ due to electron spin only, as is the case electrons to move from one band to the gnetisation and a consequent lowering for many transition metal salts, and the other to maintain a constant electrosta­ (renormalisation) of the spin-wave ener­ total ionic spin is S tic potential. The imbalance in the popu­ gies. At the transition temperature, the P2eff = 4S (S +1) Bohr magnetons2 lation of the bands gives rise to the ma­ whole spin-wave spectrum is thermally Values of Peff obtained for transition gnetisation. Stoner showed that, with a populated resulting in the complete loss metal salts lead to integer or half integer positive exchange parameter greater of long-range order. The individual values of S which agree with those than a certain critical value the magneti­ atomic moments point in random direc­ found in the ordered magnetic state. sation-induced band splitting would be tions, but retain the same magnitudes Although the paramagnetic suscepti­ self sustaining below a critical tempera­ since thermal energies are not sufficient bility of many ferromagnetic metals and ture, giving rise to a ferromagnetic state. to excite the majority carriers into the alloys follows a Curie Weiss law over The band structures for the magnetic minority band. some range of temperature, the effec­ electrons and the frequency ω versus The Stoner picture of ferromagnetism tive moments deduced do not corres­ wave-vector q spectra of magnetic exci­ is illustrated in Fig. 1b. At T « Tc the majority and minority spin-bands are split by an amount Eu which in this case is only of order kTc and less than the band width. Although at q = 0 a finite energy Eu is needed to promote an elec­ tron from the majority to the minority band, at q = q0 such a transfer can take place without the expenditure of energy. In the Stoner system the magnetic ex­ citations are of two kinds: at low ener­ gies and low q, collective spin wave exci­ tations can occur as indicated by the dashed curve in Fig. 1b, but over the whole of the hatched area the excita­ tions correspond to transfer of electrons from one band to another (Stoner excita­ Fig. 1 — Distribution in q ω space of electron states (dotted) and magnetic excitations. The tions). These Stoner excitations do not dashed lines represent the spin waves, and the hatched areas regions dominated by the conserve the value of individual atomic Stoner excitations. The Heisenberg and Stoner limits are represented in (a) and (b) respec­ moments. In the Stoner system, thermal tively. Efis the Fermi energy and the wave-vector q is normalised to unity at the Brillouin zone population of the Stoner excitations boundary. which takes place as the temperature 25 rises leads to a reduction in the band can then be used to relate the scattering short-range ferromagnetic order with an splitting which goes to zero at the Curie function for magnetic scattering to the inverse correlation range proportional to temperature so that in the paramagnetic imaginary part of the generalised ma­ [T/(T- Tc)]1/2 and a paramagnetic scat­ phase no atomic moments exist. gnetic susceptibility x"(qω) 2,3> tering function with the double Lorent- zian form Itinerant versus Local Moment Models S(q,ω) = M/(K2 + q2) • [Aq2/(A2q4 +ω2)] One may ask to what extent does which corresponds to magnetic excita­ either of these extreme models account In addition the integral of S(q,co) over all tions of a diffusive rather than a pro­ ω is proportional to the Fourier transform pagating type. for the properties of metallic ferroma- of the instantaneous spin-density spin- gnets at finite temperatures. Important There have been a number of different bulk properties which have to be ex­ density correlation function (SDSDCF) experimental neutron scattering studies which gives a snap-shot picture of the of the nature of the magnetic excitations plained are the magnetic susceptibility, average magnetisation around any atom the Curie temperature, the temperature in iron and nickel above Tc . Those which dependence of the atomic volume, and at a given instant in time. have perhaps excited the most wide­ the temperature variation of the specific spread interest presented evidence for heat. Analysis of the variation of many Magnetic Excitation Below Tc the persistence of propagating spin properties through the Curie tempera­ Triple axis neutron spectrometry waves at temperatures well above Tc, ture gives strong evidence for the per­ allows the scattering function to be 5, 6,7) and have become the object of sistence of long-lived magnetic mo­ determined over a range of q and to some controversy. One should point out ments in the paramagnetic phase. Im­ limited by practical considerations to be that although the evidence on magnetic portant among these phenomena are of the same order or less than the inci­ excitations provided by neutron scatter­ the susceptibility, the resistivity, and the dent neutrons' wavelength and frequen­ ing is rather direct, the difficulties in specific heat. The temperature depen­ cy. The results obtained for iron and determining the purely magnetic cross- dence of the atomic volume and the nickel 4,5) are illustrated in Fig. 2 where sections are formidable because the compressibility of iron and nickel sug­ they are compared with those for the nuclear scattering is in general conside­ gest that no dramatic change, which Heisenberg-like ferromagnet EuO. The rably stronger than the magnetic scat­ would be consequent on a total loss of figure shows the dispersion curve for the tering. moment, occurs at Tc . acoustic mode of collective magnetic These bulk measurements indicate excitations (spin-waves). It can be seen Neutron Scattering with Polarisation that the simple Stoner picture cannot be that whereas in EuO excitations pro­ Analysis appropriate to ferromagnets such as iron pagate at all wave-vectors out to the An experimental approach to the pro­ and nickel. On the other hand, whilst the boundary of the Brillouin zone in accor­ blem of separating the magnetic compo­ local moment theory can account for dance with the expectations for a local nent from other contributions to the many of the bulk properties of metallic moment system (Fig. 1a), the results for neutron scattering is to use a polarised magnets it fails to explain satisfactorily the metallic magnets is quite different. neutron beam — one in which all the difference in the ordered and effec­ The figure shows that the 'stiffness' of neutron spins point in a given direction tive moments. Non-integer moments as the spin waves is much greater than for — and to analyse the polarisation of the well as spectroscopic studies show that EuO, even allowing for the considerably scattered neutrons. In magnetic scatter­ magnetic electrons contribute to the higher Curie temperatures. The energy ing as opposed to nuclear scattering, the Fermi surface and since the bands are of the collective mode rises very sharply cross-section depends on the relative not narrow make the existence of local with increasing wave-vector and in iron orientations of the neutron spins and the moments in the paramagnetic phase dif­ a well defined spin-wave is still apparent wave-vector of the momentum transfer.
Recommended publications
  • Canted Ferrimagnetism and Giant Coercivity in the Non-Stoichiometric
    Canted ferrimagnetism and giant coercivity in the non-stoichiometric double perovskite La2Ni1.19Os0.81O6 Hai L. Feng1, Manfred Reehuis2, Peter Adler1, Zhiwei Hu1, Michael Nicklas1, Andreas Hoser2, Shih-Chang Weng3, Claudia Felser1, Martin Jansen1 1Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany 2Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, D-14109, Germany 3National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan Abstract: The non-stoichiometric double perovskite oxide La2Ni1.19Os0.81O6 was synthesized by solid state reaction and its crystal and magnetic structures were investigated by powder x-ray and neutron diffraction. La2Ni1.19Os0.81O6 crystallizes in the monoclinic double perovskite structure (general formula A2BB’O6) with space group P21/n, where the B site is fully occupied by Ni and the B’ site by 19 % Ni and 81 % Os atoms. Using x-ray absorption spectroscopy an Os4.5+ oxidation state was established, suggesting presence of about 50 % 5+ 3 4+ 4 paramagnetic Os (5d , S = 3/2) and 50 % non-magnetic Os (5d , Jeff = 0) ions at the B’ sites. Magnetization and neutron diffraction measurements on La2Ni1.19Os0.81O6 provide evidence for a ferrimagnetic transition at 125 K. The analysis of the neutron data suggests a canted ferrimagnetic spin structure with collinear Ni2+ spin chains extending along the c axis but a non-collinear spin alignment within the ab plane. The magnetization curve of La2Ni1.19Os0.81O6 features a hysteresis with a very high coercive field, HC = 41 kOe, at T = 5 K, which is explained in terms of large magnetocrystalline anisotropy due to the presence of Os ions together with atomic disorder.
    [Show full text]
  • Arxiv:2107.00256V1 [Cond-Mat.Str-El] 1 Jul 2021
    1 Novel elementary excitations in spin- 2 antiferromagnets on the triangular lattice A. V. Syromyatnikov∗ National Research Center "Kurchatov Institute" B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina 188300, Russia (Dated: September 3, 2021) 1 We discuss spin- 2 Heisenberg antiferromagnet on the triangular lattice using the recently proposed bond-operator technique (BOT). We use the variant of BOT which takes into account all spin degrees of freedom in the magnetic unit cell containing three spins. Apart from conventional magnons known from the spin-wave theory (SWT), there are novel high-energy collective excitations in BOT which are built from high-energy excitations of the magnetic unit cell. We obtain also another novel high-energy quasiparticle which has no counterpart not only in the SWT but also in the harmonic approximation of BOT. All observed elementary excitations produce visible anomalies in dynamical spin correlators. We show that quantum fluctuations considerably change properties of conventional magnons predicted by the SWT. The effect of a small easy-plane anisotropy is discussed. The anomalous spin dynamics with multiple peaks in the dynamical structure factor is explained that was observed recently experimentally in Ba3CoSb2O9 and which the SWT could not describe even qualitatively. PACS numbers: 75.10.Jm, 75.10.-b, 75.10.Kt I. INTRODUCTION Plenty of collective phenomena are discussed in the modern theory of many-body systems in terms of appropriate elementary excitations (quasiparticles).1{5 According to the quasiparticle concept, each weakly excited state of a system can be represented as a set of weakly interacting quasiparticles carrying quanta of momentum and energy.
    [Show full text]
  • Unerring in Her Scientific Enquiry and Not Afraid of Hard Work, Marie Curie Set a Shining Example for Generations of Scientists
    Historical profile Elements of inspiration Unerring in her scientific enquiry and not afraid of hard work, Marie Curie set a shining example for generations of scientists. Bill Griffiths explores the life of a chemical heroine SCIENCE SOURCE / SCIENCE PHOTO LIBRARY LIBRARY PHOTO SCIENCE / SOURCE SCIENCE 42 | Chemistry World | January 2011 www.chemistryworld.org On 10 December 1911, Marie Curie only elements then known to or ammonia, having a water- In short was awarded the Nobel prize exhibit radioactivity. Her samples insoluble carbonate akin to BaCO3 in chemistry for ‘services to the were placed on a condenser plate It is 100 years since and a chloride slightly less soluble advancement of chemistry by the charged to 100 Volts and attached Marie Curie became the than BaCl2 which acted as a carrier discovery of the elements radium to one of Pierre’s electrometers, and first person ever to win for it. This they named radium, and polonium’. She was the first thereby she measured quantitatively two Nobel prizes publishing their results on Boxing female recipient of any Nobel prize their radioactivity. She found the Marie and her husband day 1898;2 French spectroscopist and the first person ever to be minerals pitchblende (UO2) and Pierre pioneered the Eugène-Anatole Demarçay found awarded two (she, Pierre Curie and chalcolite (Cu(UO2)2(PO4)2.12H2O) study of radiactivity a new atomic spectral line from Henri Becquerel had shared the to be more radioactive than pure and discovered two new the element, helping to confirm 1903 physics prize for their work on uranium, so reasoned that they must elements, radium and its status.
    [Show full text]
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • An Overview of Representational Analysis and Magnetic Space Groups
    Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups Stuart Calder Neutron Scattering Division Oak Ridge National Laboratory ORNL is managed by UT-Battelle, LLC for the US Department of Energy Overview Aim: Introduce concepts and tools to describe and determine magnetic structures • Basic description of magnetic structures and propagation vector • What are the ways to describe magnetic structures properly and to access the underlying physics? – Representational analysis – Magnetic space groups (Shubnikov groups) 2 Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups Brief History of magnetic structures • ~500 BC: Ferromagnetism documented Sinan, in Greece, India, used in China ~200 BC • 1932 Neel proposes antiferromagnetism • 1943: First neutron experiments come out of WW2 Manhatten project at ORNL • 1951: Antiferromagnetism measured in MnO and Ferrimagnetism in Fe3O4 at ORNL by Shull and Wollan with neutron scattering • 1950-60: Shubnikov and Bertaut develop methods for magnetic structure description • Present/Future: - Powerful and accessible experimental and software tools available - Spintronic devices and Quantum Information Science 3 Magnetic Symmetry: an overview of Representational Analysis and Magnetic Space groups Intrinsic magnetic moments (spins) in ions • Consider an ion with unpaired electrons • Hund’s rule: maximize S/J m=gJJ (rare earths) m=gsS (transtion metals) core 2+ Ni has a localized magnetic moment of 2µB Ni2+ • Magnetic moment (or spin) is a classical
    [Show full text]
  • Magnetic Point Groups
    GDR MEETICC Matériaux, Etats ElecTroniques, Interaction et Couplages non Conventionnels Winter school 4 – 10 February 2018, Banyuls-sur-Mer, France CRYSTALLOGRAPHIC and MAGNETIC STRUCTURES from NEUTRON DIFFRACTION: the POWER of SYMMETRIES (Lecture II) Béatrice GRENIER & Gwenaëlle ROUSSE UGA & CEA, INAC/MEM/MDN UPMC & Collège de France, Grenoble, France Paris, France GDR MEETICC Banyuls, Feb. 2018 Global outline (Lectures II, and III) II- Magnetic structures Description in terms of propagation vector: the various orderings, examples Description in terms of symmetry: Magnetic point groups: time reversal, the 122 magnetic point groups Magnetic lattices: translations and anti-translations, the 36 magnetic lattices Magnetic space groups = Shubnikov groups III- Determination of nucl. and mag. structures from neutron diffraction Nuclear and magnetic neutron diffraction: structure factors, extinction rules Examples in powder neutron diffraction Examples in single-crystal neutron diffraction Interest of magnetic structure determination ? Some material from: J. Rodriguez-Carvajal, L. Chapon and M. Perez-Mato was used to prepare Lectures II and III GDR MEETICC Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 1 Banyuls, Feb. 2018 Interest of magnetic structure determination Methods and Computing Programs Multiferroics Superconductors GDR MEETICC Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 2 Banyuls, Feb. 2018 Interest of magnetic structure determination Nano particles Multiferroics Computing Methods Manganites, charge ordering orbital ordering Heavy Fermions 3 GDR MEETICC Crystallographic and Magnetic Structures / Neutron Diffraction, Béatrice GRENIER & Gwenaëlle ROUSSE 3 Banyuls, Feb. 2018 1. What is a magnetic structure ? A crystallographic structure consists in a long-range order of atoms, described by a unit cell, a space group, and atomic positions of the asymmetry unit.
    [Show full text]
  • Magnetism Some Basics: a Magnet Is Associated with Magnetic Lines of Force, and a North Pole and a South Pole
    Materials 100A, Class 15, Magnetic Properties I Ram Seshadri MRL 2031, x6129 [email protected]; http://www.mrl.ucsb.edu/∼seshadri/teach.html Magnetism Some basics: A magnet is associated with magnetic lines of force, and a north pole and a south pole. The lines of force come out of the north pole (the source) and are pulled in to the south pole (the sink). A current in a ring or coil also produces magnetic lines of force. N S The magnetic dipole (a north-south pair) is usually represented by an arrow. Magnetic fields act on these dipoles and tend to align them. The magnetic field strength H generated by N closely spaced turns in a coil of wire carrying a current I, for a coil length of l is given by: NI H = l The units of H are amp`eres per meter (Am−1) in SI units or oersted (Oe) in CGS. 1 Am−1 = 4π × 10−3 Oe. If a coil (or solenoid) encloses a vacuum, then the magnetic flux density B generated by a field strength H from the solenoid is given by B = µ0H −7 where µ0 is the vacuum permeability. In SI units, µ0 = 4π × 10 H/m. If the solenoid encloses a medium of permeability µ (instead of the vacuum), then the magnetic flux density is given by: B = µH and µ = µrµ0 µr is the relative permeability. Materials respond to a magnetic field by developing a magnetization M which is the number of magnetic dipoles per unit volume. The magnetization is obtained from: B = µ0H + µ0M The second term, µ0M is reflective of how certain materials can actually concentrate or repel the magnetic field lines.
    [Show full text]
  • Experimental Search for High Curie Temperature Piezoelectric Ceramics with Combinatorial Approaches Wei Hu Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2011 Experimental search for high Curie temperature piezoelectric ceramics with combinatorial approaches Wei Hu Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Materials Science and Engineering Commons Recommended Citation Hu, Wei, "Experimental search for high Curie temperature piezoelectric ceramics with combinatorial approaches" (2011). Graduate Theses and Dissertations. 10246. https://lib.dr.iastate.edu/etd/10246 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Experimental search for high Curie temperature piezoelectric ceramics with combinatorial approaches By Wei Hu A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Materials Science and Engineering Program of Study Committee: Xiaoli Tan, Co-major Professor Krishna Rajan, Co-major Professor Mufit Akinc, Hui Hu, Scott Beckman Iowa State University Ames, Iowa 2011 Copyright © Wei Hu, 2011. All rights reserved. ii Table of Contents Abstract ...................................................................................................................................
    [Show full text]
  • Arxiv:1712.02418V2 [Cond-Mat.Str-El] 12 Oct 2018 Layers
    Evidence for dynamic kagome ice E. Lhotel,1, ∗ S. Petit,2, y M. Ciomaga Hatnean,3 J. Ollivier,4 H. Mutka,4 E. Ressouche,5 M. R. Lees,3 and G. Balakrishnan3 1Institut N´eel,CNRS and Universit´eGrenoble Alpes, 38042 Grenoble, France 2Laboratoire L´eonBrillouin, CEA CNRS Universit Paris Saclay, CE-Saclay, F-91191 Gif-sur-Yvette, France 3Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom 4Institut Laue Langevin, F-38042 Grenoble, France 5INAC, CEA and Universit´eGrenoble Alpes, CEA Grenoble, F-38054 Grenoble, France The search for two-dimensional quantum spin liquids, exotic magnetic states remaining disordered down to zero temperature, has been a great challenge in frustrated magnetism over the last few decades. Recently, evidence for fractionalized excitations, called spinons, emerging from these states has been observed in kagome and triangular antiferromagnets. In contrast, quantum ferromagnetic spin liquids in two dimensions, namely quantum kagome ices, have been less investigated, yet their classical counterparts exhibit amazing properties, magnetic monopole crystals as well as magnetic fragmentation. Here we show that applying a magnetic field to the pyrochlore oxide Nd2Zr2O7, which has been shown to develop three-dimensional quantum magnetic fragmentation in zero field, results in a dimensional reduction, creating a dynamic kagome ice state: the spin excitation spectrum determined by neutron scattering encompasses a flat mode with a six arm shape akin to the kagome ice structure factor, from which dispersive branches emerge. I. INTRODUCTION (a) The two-dimensional kagome and three-dimensional pyrochlore structures are low connectivity lattices based (b) on corner sharing triangles or tetrahedra respectively.
    [Show full text]
  • Spin-Wave Calculations for Low-Dimensional Magnets
    Spin-Wave Calculations for Low-Dimensional Magnets Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Physik der Johann Wolfgang Goethe - Universit¨at in Frankfurt am Main von Ivan Spremo aus Ljubljana Frankfurt 2006 (D F 1) vom Fachbereich Physik der Johann Wolfgang Goethe - Universit¨at als Dissertation angenommen. Dekan: Prof. Dr. W. Aßmus Gutachter: Prof. Dr. P. Kopietz Prof. Dr. M.-R. Valenti Datum der Disputation: 21. Juli 2006 Fur¨ meine Eltern Marija und Danilo und fur¨ Christine i Contents 1 Introduction 1 2 Magnetic insulators 5 2.1 Exchange interaction . 5 2.2 Order parameters and disorder in low dimensions . 9 2.3 Low-energy excitations . 11 3 Quantum Monte Carlo methods for spin systems 13 3.1 Handscomb's scheme . 14 3.2 Stochastic Series Expansion . 15 3.3 ALPS . 16 4 Representing spin operators in terms of canonical bosons 17 4.1 Ordered state: Dyson-Maleev bosons . 17 4.2 Spin-waves in non-collinear spin configurations . 18 4.2.1 General bosonic Hamiltonian . 18 4.2.2 Classical ground state . 21 4.3 Holstein-Primakoff bosons . 22 4.4 Schwinger bosons . 23 5 Spin-wave theory at constant order parameter 25 5.1 Thermodynamics at constant order parameter . 26 5.1.1 Thermodynamic potentials and equations of state . 26 5.1.2 Conjugate field . 28 5.2 Spin waves in a Heisenberg ferromagnet . 29 5.2.1 Classical ground state . 29 5.2.2 Linear spin-wave theory . 31 5.2.3 Dyson-Maleev Vertex . 32 5.2.4 Hartree-Fock approximation . 33 5.2.5 Two-loop correction .
    [Show full text]
  • Neutron Diffraction Studies of Magnetic Ordering in Superconducting Erni2b2c and Tmni2b2c in an Applied Magnetic Field
    Risø–R–1440(EN) Neutron diffraction stud- ies of magnetic ordering in superconducting ErNi2B2C and TmNi2B2C in an ap- plied magnetic field Katrine Nørgaard Toft Risø National Laboratory, Roskilde Faculty of Science, University of Copenhagen January 2004 Abstract This thesis describes neutron diffraction studies of the long-range magnetic or- dering of superconducting ErNi2B2C and TmNi2B2C in an applied magnetic field. The magnetic structures in an applied field are especially interesting because the field suppresses the superconducting order parameter and therefore the magnetic properties can be studied while varying the strength of superconductivity. ErNi2B2C: For magnetic fields along all three symmetry directions, the observed magnetic structures have a period corresponding to the Fermi surface nesting structure. The phase diagrams present all the observed magnetic structures, and the spin configuration of the structures are well understood in the context of the mean field model by Jensen et al. [1]. However, two results remain unresolved: 1. When B applying the magnetic field along [010], the minority domain (QN=(0,Q,0) with moments perpendicular to the field) shows no signs of hysteresis. I expected it to be a meta stable state which would be gradually suppressed by a magnetic field, and when decreasing the field it would not reappear until some small field comparable to the demagnetization field of 0.1 T. 2. When the field is applied along [110], the magnetic structure rotates a small angle of 0.5o away from the symmetry direction. TmNi2B2C: A magnetic field applied in the [100] direction suppresses the zero field magnetic structure QF =(0.094, 0.094, 0) (TN = 1.6 K), in favor of the Fermi surface nest- ing structure QN =(0.483, 0, 0).
    [Show full text]
  • Screening Magnetic Two-Dimensional Atomic Crystals with Nontrivial Electronic Topology
    Screening magnetic two-dimensional atomic crystals with nontrivial electronic topology Hang Liu,†,¶ Jia-Tao Sun,*,†,¶ Miao Liu,† and Sheng Meng*,†,‡,¶ † Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China ‡ Collaborative Innovation Center of Quantum Matter, Beijing 100190, People’s Republic of China ¶ University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China Corresponding Authors *E-mail: [email protected] (J.T.S.). *E-mail: [email protected] (S.M.). ABSTRACT: To date only a few two-dimensional (2D) magnetic crystals were experimentally confirmed, such as CrI3 and CrGeTe3, all with very low Curie temperatures (TC). High-throughput first-principles screening over a large set of materials yields 89 magnetic monolayers including 56 ferromagnetic (FM) and 33 antiferromagnetic compounds. Among them, 24 FM monolayers are promising candidates possessing TC higher than that of CrI3. High TC monolayers with fascinating electronic phases are identified: (i) quantum anomalous and valley Hall effects coexist in a single material RuCl3 or VCl3, leading to a valley-polarized quantum anomalous Hall state; (ii) TiBr3, Co2NiO6 and V2H3O5 are revealed to be half-metals. More importantly, a new type of fermion dubbed type-II Weyl ring is discovered in ScCl. Our work provides a database of 2D magnetic materials, which could guide experimental realization of high-temperature magnetic monolayers with exotic electronic states for future spintronics and quantum computing applications. KEYWORDS: Magnetic two-dimensional crystals, high throughput calculations, quantum anomalous Hall effect, valley Hall effect. 1 / 12 The discovery of two-dimensional (2D) materials opens a new avenue with rich physics promising for applications in a variety of subjects including optoelectronics, valleytronics, and spintronics, many of which benefit from the emergence of Dirac/Weyl fermions.
    [Show full text]