Behavior of Viscosity and Thermal Conductivity of Fluids Near the Critical Point

Total Page:16

File Type:pdf, Size:1020Kb

Behavior of Viscosity and Thermal Conductivity of Fluids Near the Critical Point Behavior of Viscosity and Thermal Conductivity of Fluids Near the Critical Point J. V. Sengers Institute for Basic Standards, National Bureau of Standards, Washington, D.C. 1. Introduction irreversible fluxes associated with thethermody- namicforces by thelinear laws. This is the most This paper reviews the experimental information serious difficulty encountered in measuringthe on the behavior of the viscosity and thermal con- thermal conductivity and will be further discussed ductivity of fluids nearthe critical point. Section insection 4. As is well known,equilibrium or a 2 presents some general remarks on experimental steady state is approached veryslowly by a physical complicationsassociated with the measurement systemnear a critical point. Consequently, some of theseproperties in thecritical region. Ex- authorshave observed hysteresis effects in their perimental work on the viscosity of one component experimental observations of the viscosity [2, 6, 501. fluids near the liquid-vapor critical point is reviewed A prerequisite for thestudy of thebehavior of in section 3. Thethermal conductivity of one anyphysical property in thecritical region is a component fluids isconsidered in section 4. The knowledge of the values of the appropriate thermo- behavior of the viscosity and thermal conductivity dynamicvariables at which the property is meas- inbinary liquid mixtures near the critical mixing ured. Near the liquid-vapor critical point the tem- point is discussed in sections 5 and 6, respectively. peratureand density and near the critical mixing Section 7 is asummary of conclusionsbased on point of a binary liquid mixture the temperature and these experimental results. concentrationshould be known. If a P-V-T re- lationship is known, one can calculate the density 2. Some General Remarks from themeasured pressure and temperature. Closeto the critical point, where the isotherms Inaddition to the usual difficulties associated becomevery flat, thisprocedure becomes inac- with experiments in thecritical region, measure- curate.This inaccuracy is greatly increased by ments of thetransport coefficients are hampered uncertainties in the absolute value of the tempera- by the fact that they are nonequilibrium quantities. turesat which either the transport coefficients or Most accuratemeasurements have been carried theisotherm data were measured. Uncertainties out by introducingmacroscopic gradients into the in the temperature also hamper a comparison with system.In order to obtain the transport coeffi- otherproperties near the critical point. Such a cients the hydrodynamic equations must be solved comparisonfor abinary liquid mixture is com- undercertain imposed boundary conditions. plicated by thefact that the critical parameters Exact solutions of these equations are known only are very sensitive to impurities. forfluids with constantproperties in idealized If onemeasures the transport coefficients as a geometricalsituations. However, in thecritical function of pressure and temperature, care should regiona number of physicalproperties like local betaken to work atsmall enough pressure and densityand specific heat vary appreciably with temperature intervals as otherwise the whole critical position as a result of thegradients. This com- region is easilyoverlooked. In experimental work plicatesthe analysis considerably. Close to the on transport coefficients this has led to considerable critical point even the validity of the Navier-Stokes confusion,which will be discussed further in sec- .equations [41] and of thelinear laws has been tion4 in connectionwith thermal conductivity questioned [38, 42, 591. measurements.It is equallyimportant for the If in a fluid nearthe liquid-vaporcritical point study of anyother property near the liquid-vapor the temperature is not uniform,gravity can easily critical point. generateconvection currents andconvective Anotherprocedure consists infollowing an iso- heat flow which mustbe distinguished from the choricmethod where the temperature is varied 165 while the totalamount of gasis kept constant. it allows themeasurement of the viscosity at a thecritical temperature). Although theabsolute However,this method also hasits pitfalls. First, certain horizontallevel in the fluid and conse- if one lowers the temperature at constant density, quently, in principle,at acertain localdensity. accuracy of these old measurements may be limited, the relative precision is sufficiently good to warrant phasetransition occurs at a certain temperature In the capillary flow method the density varies along this conclusion. which is equal to thecritical temperature at the the capillary. After some inconclusive work on the subject by criticaldensity. Below thistransition tempera- An example of the "normal" behavior of the vis- PHILLIPS [ll], CLARK [2], and SCHROER and tureone measures either in the vapor or in the cosity outside the critical region is shown in figure BECKER [13], an experimental investigation of the liquid, depending on the experimental arrangement. 1; the viscosity coefficient of argon [4, 71 at three viscosity near the critical point of CO, was under- As a consequence the density, at which the proper- temperatures, high relative to the critical tempera- taken by NALDRETT and MAASS [lo] using an tiesunder consideration actually aremeasured, ture (t,=- 122.3 "C), as a function of density. One oscillatingdisk [6]. Thecritical region was ap- does change rapidly as a function of temperature, amagat unit of density is thedensity at 0 "C and proached by theisochoric method. One viscosity although the density averaged over vapor and liquid 1 atm.' At a given temperaturethe viscosityco- isothermat 31.14 "C wasalso determined.The phase is kept constant. The temperature at which efficient increases monotonically with thedensity: authors conclude that the viscositycoefficient shows thistransition occurs shouldbe determinedac- (dq/dp)r and (#7/dp2)r are bothpositive. The asmall anomalous increase close to thecritical curately.Moreover, even above this temperature temperature derivative (d~/aT),~is positive up to a point. At thecritical density this anomalous in- a largedensity gradient is developed close to the density well beyond the critical. At very high den- crease is about 1 percent at 32.0 "C and about 10 criticaltemperature so that the localdensity at a sities (d~/dT),~becomes negative [3, 81, but this is percent at 31.1 "C. The results confirm the conclu- certain position in the vessel is still not independent not relevant for ourpresent discussion. Some- sion of Warburg and von Babo that at 32.6 "C any of the temperature. Ultimately. close to the liquid- timesthe excess viscosity q-qo, where qo is the anomalyis smaller than 0.5 percent. The authors vapor critical point a knowledgeof the local value of viscosity coefficient in the dilute state at the given did not consider the influence of the variation of the the density is required. temperature, is considered to be only a function of density as a function of the height in the fluid. A The influence of criticalphenomena is not re- thedensity. This is, however, not true in general. cell with a height of about 13 cm was used,the stricted tothe immediate vicinity of thecritical Most measurements of the viscosity and thermal oscillatingdisk being located in the lower end of point.For instance,an anomaly in thespecific conductivity in the critical region have been carried the vessel, and an estimate from the density versus heat can be detected at temperatures considerably out for carbon dioxide because of its easily acces- height relationship publishedin the literature[65,67] higher than the critical temperature. In this paper siblecritical temperature., The discussion will shows that this effect could have caused an apparent the qualitative properties of viscosity and thermal therefore be mainly based on thephenomena 01)- increase of the same order as theanomaly observed. conductivityregarding the existence of similar served for CO2. The few investigations on other anomalies in the critical region will be discussed. substances sustain the conclusions obtained for CO2 Therefore,the conclusion thatthe viscosity ex- hibits an anomalous increase near the critical point However, theprecise mathematical character of The experimental investigation of the viscosity of is not justified. such anomalies can only be obtained from measure- CO2 in the supercritical region started with the work A pronounced anomalous increasein a wider tem- ments very close to thecritical point. In viewof of WARBURG and VON BABO in 1882 using a cap- perature range andwith the viscosity increased by a the difficulties mentioned above an analysis of the illary flow method [15]. Eventhat early these factor 2 at 31.1 "C was reported by MICHELS, BOT- latter kind is not yetpossible for thetransport authors were aware that knowledge of the density is ZEN,and SCHUURMAN [8]. Theirdata were coefficients. essential and were careful to determine the density obtained with a capillary flow method which was as well as pressure and temperature. They realized known to be accurateoutside the critical region. that thepressure difference along the capillary 3. The Viscosity of a One Component As pointed out by the authors, the method is not shouldbe kept small and applied corrections for Fluid Near the Liquid-Vapor Criti- reliable in the critical region due to the large density cal Point the variation of the density along the capillary. In gradient in the capillary resulting from the use of an illuminating
Recommended publications
  • Effect of Glass Transition: Density and Thermal Conductivity Measurements of B2O3
    High Temperatures-High Pressures, Vol. 49, pp. 125–142 ©2020 Old City Publishing, Inc. Reprints available directly from the publisher Published by license under the OCP Science imprint, Photocopying permitted by license only a member of the Old City Publishing Group DOI: 10.32908/hthp.v49.801 Effect of glass transition: density and thermal conductivity measurements of B2O3 DMITRY CHEBYKIN1*, HANS-PETER HELLER1, IVAN SAENKO2, GERT BARTZSCH1, RIE ENDO3 AND OLENA VOLKOVA1 1Institute of Iron and Steel Technology, TU Bergakademie Freiberg, Leipziger Straße 34, 09599 Freiberg, Germany 2Institute of Materials Science, TU Bergakademie Freiberg, Gustav-Zeuner-Straße 5, 09599 Freiberg, Germany 3Department of Materials Science and Engineering, Tokyo Institute of Technology, 152–8552 Tokyo, Japan Received: May 28, 2019; Accepted: October 11, 2019. The role of B2O3 as a fluxing agent for developing fluoride free fluxes has been accentuated in the recent years. Therefore, knowledge about thermo- physical properties of the oxide are essential to find the optimal chemical composition of the mold fluxes. In the present study, the density and ther- mal conductivity of B2O3 were measured by means of the buoyancy method, the maximal bubble pressure (MBP) method and the hot-wire method in the temperature range of 295–1573 K. The results are discussed in the context of the chemical stability of the B2O3 as well as the effect of glass transition on the thermal conductivity. The density of the B2O3 decreases non-linearly with increasing temperature in the temperature range of 973–1573 K. The MBP method was successfully applied for the density measurements with a viscosity up to 91 Pa.s.
    [Show full text]
  • R09 SI: Thermal Properties of Foods
    Related Commercial Resources CHAPTER 9 THERMAL PROPERTIES OF FOODS Thermal Properties of Food Constituents ................................. 9.1 Enthalpy .................................................................................... 9.7 Thermal Properties of Foods ..................................................... 9.1 Thermal Conductivity ................................................................ 9.9 Water Content ........................................................................... 9.2 Thermal Diffusivity .................................................................. 9.17 Initial Freezing Point ................................................................. 9.2 Heat of Respiration ................................................................. 9.18 Ice Fraction ............................................................................... 9.2 Transpiration of Fresh Fruits and Vegetables ......................... 9.19 Density ...................................................................................... 9.6 Surface Heat Transfer Coefficient ........................................... 9.25 Specific Heat ............................................................................. 9.6 Symbols ................................................................................... 9.28 HERMAL properties of foods and beverages must be known rizes prediction methods for estimating these thermophysical proper- Tto perform the various heat transfer calculations involved in de- ties and includes examples on the
    [Show full text]
  • THERMAL CONDUCTIVITY of CONTINUOUS CARBON FIBRE REINFORCED COPPER MATRIX COMPOSITES J.Koráb1, P.Šebo1, P.Štefánik 1, S.Kavecký 1 and G.Korb 2
    1. THERMAL CONDUCTIVITY OF CONTINUOUS CARBON FIBRE REINFORCED COPPER MATRIX COMPOSITES J.Koráb1, P.Šebo1, P.Štefánik 1, S.Kavecký 1 and G.Korb 2 1 Institute of Materials and Machine Mechanics of the Slovak Academy of Sciences, Racianska 75, 836 06 Bratislava, Slovak Republic 2 Austrian Research Centre Seibersdorf, A-2444 Seibersdorf, Austria SUMMARY: The paper deals with thermal conductivity of the continuous carbon fibre reinforced - copper matrix composite that can be applied in the field of electric and electronic industry as a heat sink material. The copper matrix - carbon fibre composite with different fibre orientation and fibre content was produced by diffusion bonding of copper-coated carbon fibres. Laser flash technique was used for thermal conductivity characterisation in direction parallel and transverse to fibre orientation. The results revealed decreasing thermal conductivity as the volume content of fibre increased and independence of through thickness conductivity on fibre orientation. Achieved results were compared with the materials that are currently used as heat sinks and possibility of the copper- based composite application was analysed. KEYWORDS: thermal conductivity, copper matrix, carbon fibre, metal matrix composite, heat sink, thermal management, heat dissipation INTRODUCTION Carbon fibre reinforced - copper matrix composite (Cu-Cf MMC) offer thermomechanical properties (TMP) which are now required in electronic and electric industry. Their advantages are low density, very good thermal conductivity and tailorable coefficient of thermal expansion (CTE). These properties are important in the applications where especially thermal conductivity plays large role to solve the problems of heat dissipation due to the usage of increasingly powerful electronic components. In devices, where high density mounting technology is applied thermal management is crucial for the reliability and long life performance.
    [Show full text]
  • Carbon Epoxy Composites Thermal Conductivity at 77 K and 300 K Jean-Luc Battaglia, Manal Saboul, Jérôme Pailhes, Abdelhak Saci, Andrzej Kusiak, Olivier Fudym
    Carbon epoxy composites thermal conductivity at 77 K and 300 K Jean-Luc Battaglia, Manal Saboul, Jérôme Pailhes, Abdelhak Saci, Andrzej Kusiak, Olivier Fudym To cite this version: Jean-Luc Battaglia, Manal Saboul, Jérôme Pailhes, Abdelhak Saci, Andrzej Kusiak, et al.. Carbon epoxy composites thermal conductivity at 77 K and 300 K. Journal of Applied Physics, American Institute of Physics, 2014, 115 (22), pp.223516-1 - 223516-4. 10.1063/1.4882300. hal-01063420 HAL Id: hal-01063420 https://hal.archives-ouvertes.fr/hal-01063420 Submitted on 12 Sep 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Science Arts & Métiers (SAM) is an open access repository that collects the work of Arts et Métiers ParisTech researchers and makes it freely available over the web where possible. This is an author-deposited version published in: http://sam.ensam.eu Handle ID: .http://hdl.handle.net/10985/8502 To cite this version : Jean-Luc BATTAGLIA, Manal SABOUL, Jérôme PAILHES, Abdelhak SACI, Andrzej KUSIAK, Olivier FUDYM - Carbon epoxy composites thermal conductivity at 80 K and 300 K - Journal of Applied Physics - Vol. 115, n°22, p.223516-1 - 223516-4 - 2014 Any correspondence concerning this service should be sent to the repository Administrator : [email protected] Carbon epoxy composites thermal conductivity at 80 K and 300 K J.-L.
    [Show full text]
  • Measurements of the Thermal Conductivity and Electrical Resistivity of Platinum from 373 to 1373° K
    NATIONAL BUREAU OF STANDARDS REPORT 9387 MEASUREMENTS OF THE THERMAL CONDUCTIVITY AND ELECTRICAL RESISTIVITY OF PLATINUM FROM 373 TO 1373° K by D. R. Flynn Environmental Engineering Section Building Research Division Institute for Applied Technology National Bureau of Standards and M. E. O' Hagan School of Engineering and Applied Science The George Washington University DO NOT REFERENCE THIS DOCUMENT U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS — THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards 1 provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation’s scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Physical 2 - 2 Chemistry—Radiation Physics—Laboratory Astrophysics —Radio Standards Laboratory , which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials.
    [Show full text]
  • The Viscosity and Thermal Conductivity Coefficients of Dilute Nitrogen and Oxygen
    jras : .<; : .:' '.: » l\l 1 ^rf' ' » * ^ 1 350 The Viscosity and Thermal Conductivity Coefficients of Dilute Nitrogen and Oxygen G. E. CHI LDS AND H. J. M. HANLEY F *** ° Cf »* U.S. DEPARTMENT OF COMMERCE ,&': Z (A National Bureau of Standards \ n ' *"*C A U O? — THE NATIONAL BUREAU OF STANDARDS The National Bureau of Standards 1 provides measurement and technical information services essential to the efficiency and effectiveness of the work of the Nation's scientists and engineers. The Bureau serves also as a focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To accomplish this mission, the Bureau is organized into three institutes covering broad program areas of research and services: THE INSTITUTE FOR BASIC STANDARDS . provides the central basis within the United States for a complete and consistent system of physical measurements, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. This Institute comprises a series of divisions, each serving a classical subject matter area: —Applied Mathematics—Electricity—Metrology—Mechanics —Heat—Atomic Physics—Physical Chemistry—Radiation Physics—Laboratory Astrophysics 2—Radio Standards Laboratory, 2 which includes Radio Standards Physics and Radio Standards Engineering—Office of Standard Refer- ence Data. THE INSTITUTE FOR MATERIALS RESEARCH . conducts materials research and provides associated materials services including mainly reference materials and data on the properties of ma- terials. Beyond its direct interest to the Nation's scientists and engineers, this Institute yields services which are essential to the advancement of technology in industry and commerce.
    [Show full text]
  • Thermodynamic Temperature
    Thermodynamic temperature Thermodynamic temperature is the absolute measure 1 Overview of temperature and is one of the principal parameters of thermodynamics. Temperature is a measure of the random submicroscopic Thermodynamic temperature is defined by the third law motions and vibrations of the particle constituents of of thermodynamics in which the theoretically lowest tem- matter. These motions comprise the internal energy of perature is the null or zero point. At this point, absolute a substance. More specifically, the thermodynamic tem- zero, the particle constituents of matter have minimal perature of any bulk quantity of matter is the measure motion and can become no colder.[1][2] In the quantum- of the average kinetic energy per classical (i.e., non- mechanical description, matter at absolute zero is in its quantum) degree of freedom of its constituent particles. ground state, which is its state of lowest energy. Thermo- “Translational motions” are almost always in the classical dynamic temperature is often also called absolute tem- regime. Translational motions are ordinary, whole-body perature, for two reasons: one, proposed by Kelvin, that movements in three-dimensional space in which particles it does not depend on the properties of a particular mate- move about and exchange energy in collisions. Figure 1 rial; two that it refers to an absolute zero according to the below shows translational motion in gases; Figure 4 be- properties of the ideal gas. low shows translational motion in solids. Thermodynamic temperature’s null point, absolute zero, is the temperature The International System of Units specifies a particular at which the particle constituents of matter are as close as scale for thermodynamic temperature.
    [Show full text]
  • Determination of Thermal Conductivity, Specific Heat and Thermal
    Biosystems Engineering (2002) 82 (2), 169–176 doi:10.1006/bioe.2002.0066, available online at http://www.idealibrary.com on PH}Postharvest Technology Determination of Thermal Conductivity, Specific Heat and Thermal Diffusivity of Borage Seeds W. Yang1; S. Sokhansanj2; J. Tang3; P. Winter4 1 Department of Food Science, University of Arkansas, 2650 N. Young Ave., Fayetteville, AR 72704, USA; e-mail of corresponding author: [email protected] 2 Oak Ridge National Lab, Bioenergy Feedstock Development Program, Oak Ridge, TN 37831-6422, USA; e-mail: [email protected] 3 Food Engineering Program, Department of Biological Systems Engineering, Washington State University, Pullman, WA 99164-6120, USA; e-mail: [email protected] 4 Hinz Automation, Inc., 410 Jessop Ave., Saskatoon, SK, Canada S7N 2S5; e-mail: [email protected] (Received 16 March 1999; accepted in revised form 15 February 2002; published online 11 June 2002) Thermal conductivity, specific heat capacity and thermal diffusivity of borage (Borago officinalis) seeds were determined at temperatures ranging from 6 to 208C and moisture contents from 1Á2to30Á3% w.b. The thermal conductivity was measured by the transient technique using a line heat source. The maximum slope method was used to analyse the line source heating data for thermal conductivity determination. The specific heat capacity was measured by different scanning calorimetry and ranged from 0Á77 to 1Á99 kJ kgÀ1KÀ1. The thermal conductivity of borage seeds ranged from 0Á11 to 0Á28 W mÀ1 KÀ1 and increased with moisture content in the range of 1Á2–30Á3% w.b. The thermal diffusivity ranged from 2Á32 Â 10À7 to 3Á18 Â 10À7 m2 sÀ1.
    [Show full text]
  • Thermal Properties of Water
    Forschungszentrum Karlsruhe Technik und Umwelt issenscnatiiK FZKA 5588 Thermal Properties of Water K. Thurnay Institut für Neutronenphysik und Reaktortechnik Projekt Nukleare Sicherheitsforschung Juni 1995 Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 5588 Thermal Properties of Water K.Thurnay Institut für Neutronenphysik und Reaktortechnik Projekt Nukleare Sicherheitsforschung Forschungszentrum Karlsruhe GmbH, Karlsruhe 1995 Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor Forschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe ISSN 0947-8620 Abstract The report describes AQUA, a code developed in the Forschungszentrum Karlsruhe to calculate thermal properties of the water in steam explosions. AQUA bases on the H.G.K, water code, yet supplies - besides of the pressure and heat capacity functions - also the thermal conductivity, viscosity and the surface tension. AQUA calculates in a new way the thermal properties in the two phase region, which is more realistic as the one used in the H.G.K, code. AQUA is equipped with new, fast runnig routines to convert temperature-density dependent states into temperature-pressure ones. AQUA has a version to be used on line and versions adapted for batch calculations. A complete description of the code is included. Thermische Eigenschaften des Wassers. Zusammenfassung. Der Bericht befaßt sich mit dem Code AQUA. AQUA wurde im Forschungszentrum Karlsruhe entwickelt um bei der Untersuchung von Dampfexplosionen die thermischen Eigenschaften des Wassers zu liefern. AQUA ist eine Fortentwicklung des H.G.K.-Wassercodes, aber er berechnet - neben Druck- und Wärmeeigenschaften - auch die Wärmeleitfähigket, die Viskosität und die Oberflächenspannung. Im Zweiphasenge• biet beschreibt AQUA die thermischen Eigenschaften mit einer neuen Methode, die real• istischer ist, als das in der H.G.K.-Code dargebotene Verfahren.
    [Show full text]
  • Thermal Conductivity 1 Thermal Conductivity
    Thermal conductivity 1 Thermal conductivity In physics, thermal conductivity, , is the property of a material's ability to conduct heat. It appears primarily in Fourier's Law for heat conduction. Thermal conductivity is measured in watts per kelvin-meter (W·K−1·m−1, i.e. W/(K·m) or in IP units (Btu·hr−1·ft−1·F−1, i.e. Btu/(hr·ft⋅F). Multiplied by a temperature difference (in kelvins, K) and an area (in square meters, m2), and divided by a thickness (in meters, m), the thermal conductivity predicts the rate of energy loss (in watts, W) through a piece of material. In the window building industry "thermal conductivity" is expressed as the U-Factor [1], which measures the rate of heat transfer and tells you how well the window insulates. U-factor values are generally recorded in IP units (Btu/(hr·ft⋅F)) and usually range from 0.15 to 1.25. The lower the U-factor, the better the window insulates. The reciprocal of thermal conductivity is thermal resistivity. Measurement There are a number of ways to measure thermal conductivity. Each of these is suitable for a limited range of materials, depending on the thermal properties and the medium temperature. There is a distinction between steady-state and transient techniques. In general, steady-state techniques are useful when the temperature of the material does not change with time. This makes the signal analysis straightforward (steady state implies constant signals). The disadvantage is that a well-engineered experimental setup is usually needed. The Divided Bar (various types) is the most common device used for consolidated rock samples.
    [Show full text]
  • The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 Bar and from Room Temperature to About 1800 K
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 20, 2017 brought to you by CORE provided by Online Research Database In Technology The properties of helium: Density, specific heats, viscosity, and thermal conductivity at pressures from 1 to 100 bar and from room temperature to about 1800 K Forskningscenter Risø, Roskilde Publication date: 1970 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Petersen, H. (1970). The properties of helium: Density, specific heats, viscosity, and thermal conductivity at pressures from 1 to 100 bar and from room temperature to about 1800 K. (Denmark. Forskningscenter Risoe. Risoe-R; No. 224). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. « Riso Report No. 224 5 o, « Danish Atomic Energy Commission .1 * Research Establishment Ris6 The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 bar and from Room Temperature to about 1800 K by Helge Petersen September, 1970 Sain dUiributort: JUL GjiUtrap, 17, »Wpdt, DK-U07 Capubaftn K, Dnaurk U.D.C m»!:62U34.3t September, 1 970 Rise Report No.
    [Show full text]
  • The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 Bar and from Room Temperature to About 1800 K
    Downloaded from orbit.dtu.dk on: Oct 04, 2021 The properties of helium: Density, specific heats, viscosity, and thermal conductivity at pressures from 1 to 100 bar and from room temperature to about 1800 K Petersen, H. Publication date: 1970 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Petersen, H. (1970). The properties of helium: Density, specific heats, viscosity, and thermal conductivity at pressures from 1 to 100 bar and from room temperature to about 1800 K. Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R No. 224 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. « Riso Report No. 224 5 o, « Danish Atomic Energy Commission .1 * Research Establishment Ris6 The Properties of Helium: Density, Specific Heats, Viscosity, and Thermal Conductivity at Pressures from 1 to 100 bar and from Room Temperature to about 1800 K by Helge Petersen September, 1970 Sain dUiributort: JUL GjiUtrap, 17, »Wpdt, DK-U07 Capubaftn K, Dnaurk U.D.C m»!:62U34.3t September, 1 970 Rise Report No.
    [Show full text]